Log in

Enzyme-free nickel electrochemical glucose sensor fabricated on pencil graphite electrode by electrodeposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the optimal conditions for the electrodeposition of nickel foam-like morphology over a pencil graphite electrode for glucose sensor application are determined. The effects of NiSO4 and NH4Cl concentrations, current density, and electrodeposition time were investigated in detail. The electrochemical performance of the nickel deposit for sensing glucose is investigated by cyclic voltammetry and chronoamperometry in alkaline solutions. Under optimized conditions, the sensitivity of the sensor toward glucose oxidation was 125.9 μA/μM.cm2 and showed a linear response in a wide range of glucose concentrations, from 2 to 8000 µM. We conclude that the nickel foam-like electrode has the potential to be used as a glucose sensor due to its superior features such as low cost and fast deposition time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the authors on reasonable request.

References

  1. P.R. Solanki, A. Kaushik, V.V. Agrawal, B.D. Malhotra, NPG Asia Mater. 3, 17 (2011)

    Article  Google Scholar 

  2. X. Liu, W. Yang, L. Chen, J. Jia, Electrochim. Acta 235, 519 (2017)

    Article  CAS  Google Scholar 

  3. D.W. Hwang, S. Lee, M. Seo, T.D. Chung, Anal. Chim. Acta 1033, 1 (2018)

    Article  CAS  Google Scholar 

  4. L. Wang, J. Bai, X. Bo, X. Zhang, L. Guo, Talanta 83, 1386 (2011)

    Article  CAS  Google Scholar 

  5. M. Wang, F. Liu, D. Chen, J. Mater. Sci. Mater. Electron. 32, 23445 (2021)

    Article  CAS  Google Scholar 

  6. G. Balkourani, T. Damartzis, A. Brouzgou, P. Tsiakaras, Sensors 22, 355 (2022)

  7. T. Song, M. Yan, M. Qian, Corros. Sci. 134, 78 (2018)

    Article  CAS  Google Scholar 

  8. K. Öksüz, Chıang Maı J. Sci. 46 (2019)

  9. Y. Wang, Z. Meng, H. Chen, T. Li, D. Zheng, Q. Xu, H. Wang, X.Y. Liu, W. Guo, J. Mater. Chem. C 7, 1966 (2019)

    Article  CAS  Google Scholar 

  10. A.B.D. Nandiyanto, T. Ogi, W.-N. Wang, L. Gradon, K. Okuyama, Adv. Powder Technol. 30, 2908 (2019)

    Article  Google Scholar 

  11. H. Wang, J. Qiu, S. Sun, W. Zhang, S. Yao, J. Mater. Sci. Mater. Electron. 32, 7751 (2021)

    Article  CAS  Google Scholar 

  12. M. Dong, H. Hu, S. Ding, C. Wang, J. Mater. Sci. Mater. Electron. 32, 19327 (2021)

    Article  CAS  Google Scholar 

  13. N.D. Nikolić, K.I. Popov, L.J. Pavlović, M.G. Pavlović, J. Solid State Electrochem. 11, 667 (2007)

    Article  Google Scholar 

  14. S.M. Rosa-Ortiz, F. Khorramshahi, A. Takshi, J. Appl. Electrochem. 49, 1203 (2019)

    Article  CAS  Google Scholar 

  15. A. Ott, L.A. Jones, S.K. Bhargava, Electrochem. Commun. 13, 1248 (2011)

    Article  CAS  Google Scholar 

  16. S. Cherevko, X. **ng, C.H. Chung, Appl. Surf. Sci. 257, 8054 (2011)

    Article  CAS  Google Scholar 

  17. N. Hui, J. Wang, J. Electroanal. Chem. 798, 9 (2017)

    Article  CAS  Google Scholar 

  18. S. Sengupta, A. Patra, S. Jena, K. Das, S. Das, Metall Mater. Trans. A Phys. Metall. Mater. Sci. 49, 920 (2018)

    Article  CAS  Google Scholar 

  19. C.A. Marozzi, A.C. Chialvo, Electrochim. Acta 45, 2111 (2000)

    Article  CAS  Google Scholar 

  20. K.J. Babu, R.T. Kumar, D.J. Yoo, S.M. Phang, G. Kumar, ACS Sustain. Chem. Eng. 6, 16982 (2018)

    Article  CAS  Google Scholar 

  21. H. Tian, M. Jia, M. Zhang, J. Hu, Electrochim. Acta 96, 285 (2013)

    Article  CAS  Google Scholar 

  22. X. Yu, M. Wang, Z. Wang, X. Gong, Z. Guo, Appl. Surf. Sci. 360, 502 (2016)

    Article  CAS  Google Scholar 

  23. K. Justice Babu, S. Sheet, Y.S. Lee, G. Gnana Kumar, ACS Sustain. Chem. Eng. 6, 1909 (2018)

    Article  CAS  Google Scholar 

  24. X. Zhang, Y. Xu, B. Ye, J. Alloys Compd. 767, 651 (2018)

    Article  CAS  Google Scholar 

  25. Y. Mu, D. Jia, Y. He, Y. Miao, H.L. Wu, Biosens. Bioelectron. 26, 2948 (2011)

    Article  CAS  Google Scholar 

  26. Z. Liu, Y. Guo, C. Dong, Talanta 137, 87 (2015)

    Article  CAS  Google Scholar 

  27. M. Fu, Z. Zhu, W. Chen, H. Yu, R. Lv, Carbon NY. 199, 520 (2022)

    Article  CAS  Google Scholar 

  28. Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. **ao, M.M.F. Choi, Analyst 133, 126 (2008)

    Article  CAS  Google Scholar 

  29. A. Ateş, K.O. Oskay, Surfaces and Interfaces 29, 101733 (2022)

    Article  Google Scholar 

  30. S. Guo, C. Zhang, M. Yang, Y. Zhou, C. Bi, Q. Lv, N. Ma, Anal. Chim. Acta 1109, 130 (2020)

    Article  CAS  Google Scholar 

  31. L. Zheng, J. Zhang, J. Song, Electrochim. Acta 54, 4559 (2009)

    Article  CAS  Google Scholar 

  32. Z. Wang, Y. Hu, W. Yang, M. Zhou, X. Hu, Sensors 12, 4860 (2012)

    Article  CAS  Google Scholar 

  33. S.E. Kim, A. Muthurasu, Electroanalysis 33, 1333 (2021)

    Article  CAS  Google Scholar 

  34. T. You, O. Niwa, Z. Chen, K. Hayashi, M. Tomita, S. Hirono, Anal. Chem. 75, 5191 (2003)

    Article  CAS  Google Scholar 

  35. S. Liu, B. Yu, T. Zhang, Electrochim. Acta 102, 104 (2013)

    Article  CAS  Google Scholar 

  36. X. Tian, S. Peng, H. Shu, T. Lai, Z. Yang, T. Chen, X. **ao, Y. Wang, J. Mater. Sci. Mater. Electron. 33, 17949 (2022)

    Article  CAS  Google Scholar 

  37. A.S. Patil, R.T. Patil, G.M. Lohar, V.J. Fulari, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021)

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

KOO was involved in writing, conceptualization, validation, supervision, resources. BÖ helped in data curation, formal analysis, investigation.

Corresponding author

Correspondence to Kürşad Oğuz Oskay.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Ethical approval

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 394 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oskay, K.O., Özkan, B. Enzyme-free nickel electrochemical glucose sensor fabricated on pencil graphite electrode by electrodeposition. J Mater Sci: Mater Electron 34, 645 (2023). https://doi.org/10.1007/s10854-023-10048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10048-y

Navigation