Log in

Investigation of electric displacement characteristics in sol–gel derived BaTiO3 polycrystalline films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ferroelectric polarization of the thin film materials obtained from the measured hysteresis loops may not be entirely derived from the actual ferro-domain switching. In order to effectively distinguish and evaluate the contribution of domain switching polarization, dielectric displacement and electric conductivity to the electric displacement of ferroelectric films, here, polycrystalline BaTiO3 (BTO) films were grown on Si substrates by sol-gel spin-coating method. The sol-gel process and the post-annealing parameters dependent micro-crystal-structure, dielectric response, ferroelectric, especially the characteristics of electric displacement were investigated. For BTO ferroelectric films obtained under the optimized processing parameters, the measured current (I)-time (t) curves as well as current (I)-voltage (V) curves were suggested to evaluate the impacts of each part. The result reveals that the electric displacement of our BTO films is due to the combined contribution of the above three parts. In addition to being distinguished by I–V, the contribution of each part can also be separated by their characteristic I–t, which can also provide some important parameters in the domain switching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N.D. Mathur, M. Bibes, A. Barthelemy, Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol 7, 101–104 (2012)

    Article  CAS  Google Scholar 

  2. A. Rivera-Calzada, F. Gallego, Y. Kalcheim, P. Salev, J. del Valle, I. Tenreiro, C. León, J. Santamaría, I.K. Schuller, Switchable optically active schottky barrier in La0.7Sr0.3MnO3/BaTiO3/ITO ferroelectric tunnel junction. Adv. Electron. Mater. 7, 2100069 (2021)

    Article  CAS  Google Scholar 

  3. Z. Yan, Y. Guo, G. Zhang, J.M. Liu, High-performance programmable memory devices based on co-doped BaTiO3. Adv. Mater. 23, 1351–1355 (2011)

    Article  CAS  Google Scholar 

  4. C. Li, L. Huang, L. Tao, W. Lu, X. Qiu, Z. Huang, Z. Liu, S. Zeng, R. Guo, Y. Zhao, K. Zeng, M. Coey, J. Chen, T. Ariando, Venkatesan, Ultrathin BaTiO3-based ferroelectric tunnel junctions through interface engineering. Nano Lett. 15, 2568–2573 (2015)

    Article  CAS  Google Scholar 

  5. A. Debnath, V. Srivastava, S. Sunny, Singh, Fabrication and characterization of metal–ferroelectric–semiconductor non–volatile memory using BaTiO3 film prepared through sol–gel process. Appl. Phys. A 126, 36 (2020)

    Article  CAS  Google Scholar 

  6. M.B. Zakaria, T. Nagata, A. Matsuda, Y. Yasuhara, A. Ogura, M. Hossain, M. Billah, Y. Yamauchi, T. Chikyow, Chemical synthesis of multilayered nanostructured perovskite thin films with dielectric features for electric capacitors. ACS Appl. Nano Mater. 1, 915–921 (2018)

    Article  CAS  Google Scholar 

  7. F. Zhuo, U. Eckstein, N.H. Khansur, C. Dietz, D. Urushihara, T. Asaka, K. Kakimoto, K.G. Webber, X. Fang, J. Rodel, Temperature-induced changes of the electrical and mechanical properties of aerosol deposited BaTiO3 thick films for energy storage applications. J. Am. Ceram. Soc. 105, 4108–4121 (2022)

    Article  CAS  Google Scholar 

  8. H. Palneedi, M. Peddigari, G.T. Hwang, D. Jeong, J. Ryu, Adv. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Funct. Mater. 28, 1803665 (2018)

    Article  Google Scholar 

  9. W. Guo, X. Ouyang, B. Li, L. Liu, J. Wang, X. Zhong, H. Guo, F. Wang, Simulation of proton radiation on electrocaloric effect in BaTiO3 ferroelectric thin film. Mater. Lett. 215, 318–320 (2017)

    Article  Google Scholar 

  10. C. Paillard, X. Bai, I.C. Infante, M. Guennou, G. Geneste, M. Alexe, J. Kreisel, B. Dkhil, Photovoltaics with ferroelectrics: current status and beyond. Adv. Mater. 28, 5153–5168 (2016)

    Article  CAS  Google Scholar 

  11. D. Kothandan, R.J. Kumar, K.C.B. Naidu, Barium titanate microspheres by low temperature hydrothermal method: studies on structural, morphological, and optical properties. J. Asian Ceram. Soc. 6, 1–6 (2019)

    Article  Google Scholar 

  12. S. Selvarajan, N.R. Alluri, A. Chandrasekhar, S. Kim, Unconventional active biosensor made of piezoelectric BaTiO3 nanoparticles for biomolecule detection. Sens. Actuators B 253, 1180 (2017)

    Article  CAS  Google Scholar 

  13. W. Zhang, H. Wu, L. Kang, B. Peng, J. Bao, F. Hu, (001)-oriented BiFeO3 films integrated on Si with enhanced electrical performances. J. Am. Ceram. Soc. 104, 6373–6383 (2021)

    Article  CAS  Google Scholar 

  14. L. Pintilie, M. Alexe, Ferroelectric-like hysteresis loop in nonferroelectric systems. Appl. Phys. Lett. 87, 2777 (2005)

    Article  Google Scholar 

  15. J.F. Scott, Ferroelectrics go bananas. J. Phys. : Condens. Matter 20, 021001 (2008)

    Google Scholar 

  16. H. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang, T. Zeng, Z. Gao, M.J. Reece, The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielectr. 1, 107–118 (2011)

    Article  CAS  Google Scholar 

  17. F. Guo, Z. Shi, B. Yang, Y. Liu, S. Zhao, Flexible lead-free Na0.5Bi0.5TiO3–EuTiO3 solid solution film capacitors with stable energy storage performances. Scripta Mater. 184, 52–56 (2020)

    Article  CAS  Google Scholar 

  18. Q.H. Jiang, F.T. Liu, C.W. Nan, Y.H. Lin, M.J. Reece, H.X. Yan, H.P. Ning, Z.J. Shen, High-temperature ferroelectric phase transition observed in multiferroic Bi0.91La0.05Tb0.04FeO3. Appl. Phys. Lett. 95, 012909 (2009)

    Article  Google Scholar 

  19. K.C.B. Naidu, V.N. Reddy, T.S. Sarmash, T. Subbarao, D. Kothandan, N.S. Kumar, Structural, morphological, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system. J. Aust Ceram. Soc. 55, 201–218 (2019)

    Article  Google Scholar 

  20. H. Zhang, H. Yan, H. Ning, M.J. Reece, M. Eriksson, Z. Shen, Y. Kan, P. Wang, The grain size effect on the properties of Aurivillius phase Bi3.15Nd0.85Ti3O12 ferroelectric ceramics. Nanotechnology 20, 385708 (2009)

    Article  Google Scholar 

  21. I. Velasco-Davalos, F. Ambriz-Vargas, C. Gomez-Yanez, R. Thomas, A. Ruediger, Polarization reversal in BaTiO3 nanostructures synthesized by microwave-assisted hydrothermal method. J. Alloys Compd. 667, 268–274 (2016)

    Article  CAS  Google Scholar 

  22. B. Wang, H. Lu, C.W. Bark, C.B. Eom, L.Q. Chen, Mechanically induced ferroelectric switching in BaTiO3 thin films. Acta Mater. 193, 151–162 (2020)

    Article  CAS  Google Scholar 

  23. A. Fernandez, M. Acharya, H. Lee, J. Schimpf, Y. Jiang, D. Lou, Z. Tian, L.W. Martin, Thin-film ferroelectrics. Adv. Mater. 34, 2108841 (2022)

    Article  CAS  Google Scholar 

  24. Y. Ahn, J.Yeog Son, Deposition-rate-dependent ferroelectric properties of epitaxially grown BaTiO3 thin films. Mater. Res. Bull. 145, 111516 (2022)

    Article  CAS  Google Scholar 

  25. J. Zhao, G. Niu, W. Ren, L. Wang, N. Zhang, Y. Sun, Q. Wang, M. Liu, Y. Zhao, Polarization behavior of lead-free 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 thin films with enhanced ferroelectric properties. J. Eur. Ceram. Soc. 40, 3928–3935 (2020)

    Article  CAS  Google Scholar 

  26. A.I. Ali, K. Park, A. Ullah, R. Huh, Y.S. Kim, Ferroelectric enhancement of La-doped BaTiO3 thin films using SrTiO3 buffer layer. Thin Solid Films 551, 127–130 (2014)

    Article  CAS  Google Scholar 

  27. F. Zhang, M. Li, Y. Zhu, M. Zhao, S. **e, M. Wei, Y. Li, Z. Hu, M. Li, Ferroelectric polarization enhancement of photovoltaic effects in BaTiO3/BiFeO3/TiO2 heterostructure by introducing double-functional layers. J. Alloys Compd. 695, 3178–3182 (2017)

    Article  CAS  Google Scholar 

  28. H. Zhong, X. Wang, X. Li, Z. Lu, Z. Chen, Electrostatic coupling driven dielectric enhancement of PZT/BTO multilayer thin films. J. Mater. Sci. : Mater. Electron. 32, 18087–18094 (2021)

    CAS  Google Scholar 

  29. R.P. Wijaya, T.Y. Raksa, B. Soegijono, Crystal structure and optical properties of oxygen-deficiency of barium titanate (BaTiO3-x) prepared by sol-gel method. AIP Conf. Proc. 2331, 030012 (2021)

  30. M. Manso-Silván, L. Fuentes-Cobas, R.J. Martin-Palma, M. Hernández-Véleza, J. M. Martínez-Duart, BaTiO3 thin films obtained by sol–gel spin coating. Surf. Coat. Technol. 151, 118–121 (2002)

    Article  Google Scholar 

  31. C. Livage, A. Safari, L.C. Klein, Sol-gel lead zirconate-titanate thin films: effect of solution concentration. Eighth IEEE International Symposium on Applications of Ferroelectrics. IEEE, Greenville, SC, U.S.A., August 30 – September 2, 1992. DOI: https://doi.org/10.1109/ISAF.1992.300596

  32. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    Article  CAS  Google Scholar 

  33. W. Zhang, H. Wu, X. Zhang, H. Zhu, F. Hu, Growth of (001) preferentially oriented BiFeO3 films on Si substrate by sol-gel method. Mater. Res. Express 6, 106420 (2019)

    Article  CAS  Google Scholar 

  34. S. Dastagiri, M.V. Lakshmaiah, K.C.B. Naidu, N.S. Kumar, A. Khan, Induced dielectric behavior in high dense AlxLa1–xTiO3 (x = 0.2–0.8) nanospheres. J. Mater. Sci. : Mater. Electron. 30, 20253–20264 (2019)

    CAS  Google Scholar 

  35. W. Zhang, F. Hu, Effects of substrate-controlled-orientation on the electrical performance of sputtered BaTiO3 thin films. J. Vac Sci. Technol. B 38, 012208 (2020)

    Article  CAS  Google Scholar 

  36. W. Zhang, B. Peng, L. Kang, F. Hu, H. Cheng, Y. Wang, Grain texture dependent charge transport behaviors and dielectric responses of BaTiO3 films fabricated on MgO substrates. Mater. Res. Bull. 145, 111553 (2022)

    Article  CAS  Google Scholar 

  37. J.E. Brown, C. Ma, J. Acharya, B. Ma, J.Z. Wu, J. Li, Controlling dielectric and relaxor-ferroelectric properties for energy storage by tuning Pb0.92La0.08Zr0.52Ti0.48O3 film thickness. ACS Appl. Mater. Interfaces 6, 22417–22422 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 51602160) and Natural Science Foundation of Jiangsu Province (Grant No. BK20150842). We would also like to thank the talent project of Nan**g University of Posts and Telecommunications (NUPTSF) (Grant Nos. NY222127, NY214161 and NY215087).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design. The experimental investigations and characterizations were conducted by JL and HZ. Acquisition of data, and analysis were performed by HZ, WY and WZ. The first draft of the manuscript was written by JL which was improved by WZ. All authors commented on previous versions of the manuscript and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, H., Yao, W. et al. Investigation of electric displacement characteristics in sol–gel derived BaTiO3 polycrystalline films. J Mater Sci: Mater Electron 34, 640 (2023). https://doi.org/10.1007/s10854-023-09936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09936-0

Navigation