Log in

Supercapacitor and magnetic properties of NiO and manganese-doped NiO nanoparticles synthesized by chemical precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research paper, pristine nickel oxide (NiO) and Mn-doped nickel oxide nanoparticles (NPs) were manufactured through the chemical precipitation method. The X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV–Visible diffuse reflectance spectroscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy/selected area electron diffraction (TEM/SAED), vibrating sample magnetometer, and cyclic voltammetry were used to examine the pristine and Mn-doped NiO NPs. The XRD results confirmed that all the samples exhibit face-centered cubic structures with decreasing crystallite sizes. SEM and TEM studies show NPs have spherical morphology. The deviation in-between the high energy bandgap and optical absorption has been investigated in pristine and Mn-doped samples. The presence of a peak in the FT-IR spectra at 446 cm−1 confirmed the creation of the NiO phase. Hysteresis measurements show the exchange of weak ferromagnetic to superparamagnetism in the samples due to incorporation of Mn ions. It has been confirmed that the highest capacitance was measured at 555 F/g with a 10 mV/s scan rate for pristine NiO samples. In this research, the pristine NiO and Mn-doped NiO NPs can be used in data storage and supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the data are generated or analyzed during this study are included in this published article.

References

  1. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)

    Article  CAS  Google Scholar 

  2. N.A. Mala, M.A. Dar, S. Sivakumar, S. Husain, K.M. Batoo, Enhanced electrochemical properties of zinc and manganese co-doped NiO nanostructures for its high-performance supercapacitor applications. Inorg. Chem. Commun. 142, 109661 (2022)

    Article  CAS  Google Scholar 

  3. K. Sathishkumar, N. Shanmugam, N. Kannadasan, S. Cholan, G. Viruthagiri, Influence of Zn2+ ions incorporation on the magnetic and pseudo capacitance behaviors of NiO nanoparticles. Mater. Sci. Semicond. Process. 27, 846–853 (2014)

    Article  CAS  Google Scholar 

  4. S. Sivakumar, N.A. Mala, K.M. Batoo, E.H. Raslan, Efficient, highly stable Zn2+ doped NiO nanoparticles with enhanced magnetic and supercapacitor applications. Mater. Technol. 37(10), 1375–1387 (2022)

    Article  CAS  Google Scholar 

  5. S. Thota, J.H. Shim, M.S. Seehra, Size-dependent shifts of the Néel temperature and optical band-gap in NiO nanoparticles. J. Appl. Phys. 114(21), 214307 (2013)

    Article  Google Scholar 

  6. Z. Li, L. Wei, Y. Liu, Y. Su, X. Dong, Y. Zhang, Facile synthesis of single-crystalline mesoporous NiO nanosheets as high-performance anode materials for Li-ion batteries. J. Mater. Sci.: Mater. Electron. 28(18), 13853–13860 (2017)

    CAS  Google Scholar 

  7. F.I. Dar, K.R. Moonoosawmy, M. Es-Souni, Morphology and property control of NiO nanostructures for supercapacitor applications. Nanoscale Res. Lett. 8(1), 1–7 (2013)

    Article  Google Scholar 

  8. I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rehacek, Preparation of nickel oxide thin films for gas sensors applications. Sens. Actuators B Chem. 57(1–3), 147–152 (1999)

    Article  CAS  Google Scholar 

  9. C. Nie, W. Zeng, Y. Li, The 3D crystal morphologies of NiO gas sensor and constantly improved sensing properties to ethanol. J. Mater. Sci.: Mater. Electron. 30(2), 1794–1802 (2019)

    CAS  Google Scholar 

  10. M. Martini, G.E.D.S. Brito, M.C.D.A. Fantini, A.F. Craievich, A. Gorenstein, Electrochromic properties of NiO-based thin films prepared by sol–gel and dip coating. Electrochim. Acta 46(13–14), 2275–2279 (2001)

    Article  CAS  Google Scholar 

  11. X.Y. Liu, Y.Q. Zhang, X.H. **a, S.J. Shi, Y. Lu, X.L. Wang et al., Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor. J. Power Sources 239, 157–163 (2013)

    Article  CAS  Google Scholar 

  12. H. Zhu, D.C. Rosenfeld, M. Harb, D.H. Anjum, M.N. Hedhili, S. Ould-Chikh, J.M. Basset, Ni–M–O (M= Sn, Ti, W) catalysts prepared by a dry mixing method for oxidative dehydrogenation of ethane. ACS Catal. 6(5), 2852–2866 (2016)

    Article  CAS  Google Scholar 

  13. S. Sankar, S.K. Sharma, N. An, H. Lee, D.Y. Kim, Y.B. Im et al., Photocatalytic properties of Mn-doped NiO spherical nanoparticles synthesized from sol-gel method. Optik 127(22), 10727–10734 (2016)

    Article  CAS  Google Scholar 

  14. B. Ebin, Simple preparation of Ni and NiO nanoparticles using raffinate solution originated from spent NiMH battery recycling. J. Inorg. Organomet. Polym Mater. 28(6), 2554–2563 (2018)

    Article  CAS  Google Scholar 

  15. D. Hong, W. Yan, Q. Liu, T. Yao, Z. Sun, S. Wei, Structures and magnetic properties of Mn-doped NiO thin films. J. Phys. D Appl. Phys. 47(29), 295001 (2014)

    Article  Google Scholar 

  16. M.J. Kartha, B.A. Reshi, P.S. Walke, D. Dastan, Morphological study of thin films: simulation and experimental insights using horizontal visibility graph. Ceram. Int. 48(4), 5066–5074 (2022)

    Article  CAS  Google Scholar 

  17. Z.Y. Wang, R.H. Fan, Q.Q. Li, L. Qian, Preparation of NiO nanosheets by hydrothermal method and its electrochemical capacitive properties. Mater. Sci. Forum 848, 396–400 (2016)

    Article  Google Scholar 

  18. B.A. Reshi, S. Kumar, A. Misra, R. Varma, Multivariable study on growth of diamond on diamond substrates by microwave plasma chemical vapour deposition. Mater. Res. Express 6(4), 046407 (2019)

    Article  Google Scholar 

  19. K. Anandan, V. Rajendran, Effects of Mn on the magnetic and optical properties and photocatalytic activities of NiO nanoparticles synthesized via the simple precipitation process. Mater. Sci. Eng. B 199, 48–56 (2015)

    Article  CAS  Google Scholar 

  20. C. Thangamani, P. Vijaya Kumar, K. Gurushankar, K. Pushpanathan, Structural and size dependence magnetic properties of Mn-doped NiO nanoparticles prepared by wet chemical method. J. Mater. Sci.: Mater. Electron. 31(14), 11101–11112 (2020)

    CAS  Google Scholar 

  21. N.A. Mala, M.A. Dar, S. Sivakumar, K.S. Bhat, G.N. Sinha, K.M. Batoo, Electrochemical supremacy of cobalt-doped nickel oxide and its supercapacitor applications with its mesoporous morphology. J. Mater. Sci.: Mater. Electron. 33(14), 11582–11590 (2022)

    CAS  Google Scholar 

  22. S. Sivakumar, N.A. Mala, Synthesis and characterization of manganese do** on NiO nanoparticles and its supercapacitor applications. Mater. Today: Proc. 49, 1469–1474 (2022)

    CAS  Google Scholar 

  23. K. Gopinadhan, S.C. Kashyap, D.K. Pandya, S. Chaudhary, High temperature ferromagnetism in Mn-doped SnO2 nanocrystalline thin films. J. Appl. Phys. 102(11), 113513 (2007)

    Article  Google Scholar 

  24. M.A. Dar, D. Govindarajan, K.M. Batoo, M. Hadi, G.N. Dar, Photovoltaic and Supercapacitor performance of SnSe nanoparticles prepared through co-precipitation method. Mater. Technol. 37(10), 1396–1409 (2022)

    Article  CAS  Google Scholar 

  25. R. Sathish Kumar, S. Johnson Jeyakumar, M. Jothibas, I. Kartharinal Punithavathy, J. Prince Richard, Influence of molar concentration on structural, optical and magnetic properties of NiO nanoparticles. J. Mater. Sci.: Mater. Electron. 28(20), 15668–15675 (2017)

    CAS  Google Scholar 

  26. M.A. Dar, D. Govindarajan, G.N. Dar, Comparing the electrochemical performance of bare SnS and Cr-doped sns nanoparticles synthesized through solvothermal method. Phys. Solid State 63(9), 1343–1350 (2021)

    Article  CAS  Google Scholar 

  27. M.A. Dar, N.A. Mala, G.N. Dar, S.S. Kumar, D. Govindarajan, Structural, optical, antibacterial analysis of Se NPs synthesized by precipitation method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 11(4), 045001 (2020)

    CAS  Google Scholar 

  28. M.A. Dar, D. Govindarajan, G.N. Dar, Facile synthesis of SnS nanostructures with different morphologies for supercapacitor and dye-sensitized solar cell applications. J. Mater. Sci.: Mater. Electron. 32(15), 20394–20409 (2021)

    CAS  Google Scholar 

  29. M.A. Dar, M.Y. Bhat, N.A. Mala, H.A. Rather, S. Venkatachalam, N. Srinivasan, Structural, morphological and supercapacitor applications of SnS nanomaterials prepared in three different types of solvents. Mater. Today: Proc. 66, 1689–1698 (2022)

    Google Scholar 

  30. M.A. Dar, D. Govindarajan, K.M. Batoo, C. Siva, Supercapacitor and magnetic properties of Fe doped SnS nanoparticles synthesized through solvothermal method. J. Energy Storage 52, 105034 (2022)

    Article  Google Scholar 

  31. B.J. Rani, G. Ravi, R. Yuvakkumar, S. Ravichandran, F. Ameen, A. Al-Sabri, Efficient, highly stable Zn-doped NiO nanocluster electrocatalysts for electrochemical water splitting applications. J. Sol-Gel. Sci. Technol. 89(2), 500–510 (2019)

    Article  CAS  Google Scholar 

  32. N.A. Mala, S. Sivakumar, K.M. Batoo, M. Hadi, Design and fabrication of iron-doped nickel oxide-based flexible electrode for high-performance energy storage applications. Inorg. Chem. Commun. 131, 108797 (2021)

    Article  CAS  Google Scholar 

  33. Z. Ahmad, S. Kumar, C.K. Trinh, J.J. Shim, J.S. Lee, Decoupling electrochemical parameters of molecular-level-controlled polypyrrole and graphene oxide nanocomposite. Appl. Surf. Sci. 610, 155464 (2023)

    Article  CAS  Google Scholar 

  34. Z. Ahmad, W.B. Kim, S. Kumar, T.H. Yoon, J.J. Shim, J.S. Lee, Redox-active supercapacitor electrode from two-monomer-connected precursor (Pyrrole: Anthraquinonedisulfonic acid: Pyrrole) and sulfonated multi-walled carbon nanotube. Electrochim. Acta 415, 140243 (2022)

    Article  CAS  Google Scholar 

  35. B. Govindarajan, R. Palanimuthu, K.M. Manikandan, Influence of Mg do** in magnetic properties of NiO nanoparticles and its electrical applications. J. Mater. Sci.: Mater. Electron. 30(7), 6519–6527 (2019)

    CAS  Google Scholar 

  36. S. Sivakumar, N.A. Mala, K.M. Batoo, M.F. Ijaz, Conserved crystal phase and morphology: electrochemical supremacy of copper (Cu) and iron (Fe) dual-doped nickel oxide and its supercapacitor applications. Inorg. Chem. Commun. 134, 108959 (2021)

    Article  CAS  Google Scholar 

  37. A. Jafari, S.P. Jahromi, K. Boustani, B.T. Goh, N.M. Huang, Evolution of structural and magnetic properties of nickel oxide nanoparticles: influence of annealing ambient and temperature. J. Magn. Magn. Mater. 469, 383–390 (2019)

    Article  CAS  Google Scholar 

  38. G. Bharathy, P. Raji, Room temperature ferromagnetic behavior of Mn doped NiO nanoparticles: a suitable electrode material for supercapacitors. J. Mater. Sci.: Mater. Electron. 28(23), 17889–17895 (2017)

    CAS  Google Scholar 

  39. S. Farhadi, Z. Roostaei-Zaniyani, Simple and low-temperature synthesis of NiO nanoparticles through solid-state thermal decomposition of the hexa (ammine) Ni (II) nitrate,[Ni(NH3)6](NO3)2, complex. Polyhedron 30(7), 1244–1249 (2011)

    Article  CAS  Google Scholar 

  40. S.J. Uke, S.P. Mardikar, D.R. Bambole, Y. Kumar, G.N. Chaudhari, Sol-gel citrate synthesized Zn doped MgFe2O4 nanocrystals: a promising supercapacitor electrode material. Mater. Sci. Energy Technol. 3, 446–455 (2020)

    CAS  Google Scholar 

  41. S. Kumar, I.A. Mir, Z. Ahmad, K. San Hui, D.A. Dinh, L. Zhu et al., Microflowers of Sn-Co-S derived from ultra-thin nanosheets for supercapacitor applications. J. Energy Storage 49, 104084 (2022)

    Article  Google Scholar 

  42. G. Srikesh, A.S. Nesaraj, Facile preparation and characterization of novel manganese doped nickel oxide based nanostructured electrode materials for application in electrochemical supercapacitors. J. Asian Ceram. Soc. 8(3), 835–847 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

NAM is grateful to the Head of the Department of Physics at Annamalai University for providing the required resources to complete this work.

Author information

Authors and Affiliations

Authors

Contributions

SS contributed to supervision, and visualization; NAM contributed to methodology, validation, conceptualization, formal analysis, visualization, writing of the original draft, and writing, reviewing, & editing of the manuscript; MAD, MDR, KMB, BAR, and ZA contributed to reviewing, & editing of the manuscript.

Corresponding authors

Correspondence to Nazir Ahmad Mala, S. Sivakumar or Zubair Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mala, N.A., Dar, M.A., Rather, M.u.D. et al. Supercapacitor and magnetic properties of NiO and manganese-doped NiO nanoparticles synthesized by chemical precipitation method. J Mater Sci: Mater Electron 34, 505 (2023). https://doi.org/10.1007/s10854-023-09907-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09907-5

Navigation