Log in

A hybrid additive with both suppressor and leveler capability for damascene copper electrodeposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Additives are essential for damascene copper electroplating to achieve defect-free deposition in nanoscale interconnect on chips. A hybrid additive named 1000EQ with capabilities of both suppressor and leveler has been synthesized and analyzed. The additive contains polyether segment and nitrogen cation which are typical functional groups of suppressor and leveler, respectively. Electrochemical measurements reveal that 1000EQ has strong inhibition toward copper deposition and is more resistant to the desorption of accelerator than traditional suppressor polyethylene glycol (PEG, Mw = 10,000). 1000EQ and bis-(sodium sulfopropyl)-disulfide (SPS) were used as additives to achieve a defect-free filling of features with 70 nm in width and an aspect ratio above 3. The ratio of copper film thickness over dense and sparse patterned area is close to 1 and the root mean square roughness (Rq) of the film is 9.4 nm, acting as a solid proof of its hybrid characteristic. The resistivity of the copper film is 1.80 ± 0.02 µΩ cm. The characterizations establish that 1000EQ is a promising candidate which can serve as both suppressor and leveler for damascene copper electrodeposition and is able to simplify the bath used in copper electrodeposition process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P.C. Andricacos, Electrochem. Soc. Interface 8, 32 (1999)

    Article  CAS  Google Scholar 

  2. P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, H. Deligianni, IBM J. Res. Dev. 42, 567 (1998)

    Article  CAS  Google Scholar 

  3. P.H. Haumesser, A. Cordeau, S. Maitrejean, T. Mourier, L.G. Gosset, W.F.A. Besling, G. Passemard, J. Torres, Proceedings of the IEEE 2004 international interconnect technology conference, 2004, pp. 3–5

  4. H.H. Radamson, H. Zhu, Z. Wu, X. He, H. Lin, J. Liu, J. **ang, Z. Kong, W. **ong, J. Li, H. Cui, J. Gao, H. Yang, Y. Du, B. Xu, B. Li, X. Zhao, J. Yu, Y. Dong, G. Wang, Nanomaterials (Basel) 10, 1555 (2020)

    Article  CAS  Google Scholar 

  5. P. Broekmann, A. Fluegel, C. Emnet, M. Arnold, C. Roeger-Goepfert, A. Wagner, N.T.M. Hai, D. Mayer, Electrochim. Acta 56, 4724 (2011)

    Article  CAS  Google Scholar 

  6. T.P. Moffat, D. Wheeler, M.D. Edelstein, D. Josell, IBM J. Res. Dev. 49, 19 (2005)

    Article  CAS  Google Scholar 

  7. S.K. Cho, H.C. Kim, M.J. Kim, J.J. Kim, J. Electrochem. Soc. 163, D428 (2016)

    Article  CAS  Google Scholar 

  8. N.T.M. Hai, K.W. Kramer, A. Fluegel, M. Arnold, D. Mayer, P. Broekmann, Electrochim. Acta 83, 367 (2012)

    Article  CAS  Google Scholar 

  9. T.M.T. Huynh, F. Weiss, N.T.M. Hai, W. Reckien, T. Bredow, A. Fluegel, M. Arnold, D. Mayer, H. Keller, P. Broekmann, Electrochim. Acta 89, 537 (2013)

    Article  CAS  Google Scholar 

  10. Q. Huang, B.C. Baker-O’Neal, J.J. Kelly, P. Broekmann, A. Wirth, C. Emnet, M. Martin, M. Hahn, A. Wagner, D. Mayer, Electrochem. Solid-State Lett. 12, D27 (2009)

    Article  CAS  Google Scholar 

  11. Y. **, Y.F. Sui, L. Wen, F.M. Ye, M. Sun, Q.M. Wang, J. Electrochem. Soc. 160, D20 (2013)

    Article  CAS  Google Scholar 

  12. M.J. Willey, A.C. West, J. Electrochem. Soc. 154, D156 (2007)

    Article  CAS  Google Scholar 

  13. J.W. Gallaway, A.C. West, J. Electrochem. Soc. 155, D632 (2008)

    Article  CAS  Google Scholar 

  14. J.W. Gallaway, M.J. Willey, A.C. West, J. Electrochem. Soc. 156, D146 (2009)

    Article  CAS  Google Scholar 

  15. F. Wang, K. Zhou, Q. Zhang, Y. Le, W. Liu, Y. Wang, F. Wang, Microelectron. Eng. 215, 111003 (2019)

    Article  CAS  Google Scholar 

  16. L. Yin, Z.H. Liu, Z.P. Yang, Z.L. Wang, S. Shingubara, Trans. Inst. Met. Finish. 88, 149 (2010)

    Article  CAS  Google Scholar 

  17. L.-L. Li, H.-C. Yeh, J. Mater. Sci.: Mater. Electron. 32, 14358 (2021)

    CAS  Google Scholar 

  18. N.T.M. Hai, J. Furrer, E. Barletta, N. Luedi, P. Broekmann, J. Electrochem. Soc. 161, D381 (2014)

    Article  CAS  Google Scholar 

  19. N.T.M. Hai, F. Janser, N. Luedi, P. Broekmann, ECS Electrochem. Lett. 2, D52 (2013)

    Article  Google Scholar 

  20. A. Radisic, O. Luhn, H.G.G. Philipsen, Z. El-Mekki, M. Honore, S. Rodet, S. Armini, C. Drijbooms, H. Bender, W. Ruythooren, Microelectron. Eng. 88, 701 (2011)

    Article  CAS  Google Scholar 

  21. W.-P. Dow, C.-C. Li, Y.-C. Su, S.-P. Shen, C.-C. Huang, C. Lee, B. Hsu, S. Hsu, Electrochim. Acta 54, 5894 (2009)

    Article  CAS  Google Scholar 

  22. J.J. Hatch, M.J. Willey, A.A. Gewirth, J. Electrochem. Soc. 158, D323 (2011)

    Article  CAS  Google Scholar 

  23. S.K. Kim, D. Josell, T.P. Moffat, J. Electrochem. Soc. 153, C826 (2006)

    Article  CAS  Google Scholar 

  24. B. Chen, A. Wang, S. Wu, L. Wang, Electrochemistry 84, 414 (2016)

    Article  CAS  Google Scholar 

  25. R. Schmidt, C.D. Bandas, A.A. Gewirth, J.M. Knaup, Phys. Status Solidi. Rapid Res. Lett. 15, 2100351 (2021)

    Article  CAS  Google Scholar 

  26. N.T.M. Hai, J. Furrer, F. Stricker, T.M.T. Huynh, I. Gjuroski, N. Luedi, T. Brunner, F. Weiss, A. Fluegel, M. Arnold, I. Chang, D. Mayer, P. Broekmann, J. Electrochem. Soc. 160, D3116 (2013)

    Article  CAS  Google Scholar 

  27. H. Nguyen Thi Minh, P. Broekmann, Chemelectrochem 2, 1096 (2015)

    Article  Google Scholar 

  28. R. Akolkar, U. Landau, J. Electrochem. Soc. 151, C702 (2004)

    Article  CAS  Google Scholar 

  29. Y.M. Chen, W. He, X.M. Chen, C. Wang, Z.H. Tao, S.X. Wang, G.Y. Zhou, M. Moshrefi-Torbati, Electrochim. Acta 120, 293 (2014)

    Article  CAS  Google Scholar 

  30. W.P. Dow, M.Y. Yen, C.W. Liu, C.C. Huang, Electrochim. Acta 53, 3610 (2008)

    Article  CAS  Google Scholar 

  31. L. Zheng, W. He, K. Zhu, C. Wang, S.X. Wang, Y. Hong, Y.M. Chen, G.Y. Zhou, H. Miao, J.Q. Zhou, Electrochim. Acta 283, 560 (2018)

    Article  CAS  Google Scholar 

  32. W.-P. Dow, C.-C. Li, M.-W. Lin, G.-W. Su, C.-C. Huang, J. Electrochem. Soc. 156, D314 (2009)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

JC performed the experiments, analyzed data and wrote the manuscript. GL participated in synthesizing and characterizing the targeted 1000EQ. YZ participated in discussing some experiments data. YC and FX supervised the project and revised the manuscript. All authors have already read and approved the submitted manuscript.

Corresponding authors

Correspondence to Yuanrong Cheng or Fei **ao.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 194.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Lu, G., Zhang, Y. et al. A hybrid additive with both suppressor and leveler capability for damascene copper electrodeposition. J Mater Sci: Mater Electron 34, 167 (2023). https://doi.org/10.1007/s10854-022-09606-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09606-7

Navigation