Log in

Improved sensing performance of Fe-ZnO/GO mesoporous composites based on QCM

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mesoporous composites of Fe-doped ZnO and graphene oxide (Fe-ZnO/GO) were prepared by hydrothermal method, and the heterogeneous assembly of Fe-ZnO and GO was realized and used to construct the room-temperature QCM gas sensor. The nanocomposites were characterized by XRD, SEM, HRTEM, BET, Raman, FTIR, and XPS, and the effects of GO content on structure and gas sensitivity were discussed. In Fe-ZnO/GO composites, Fe-ZnO was hetero-assembled with GO, while reducing GO to rGO. The maximum specific surface area of 106.54 m2/g was determined by Fe-ZnO/GO-1, with a GO content of 1wt%. The QCM gas sensor based on Fe-ZnO/GO-1 exhibited an outstanding response to ethanol at 25 °C, and the sensitivity to 10 ppm ethanol was 11 Hz, which was 3.7 times higher than that of Fe-ZnO. This study provides useful information for the construction of QCM gas sensors based on transition metal oxides and graphene composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. S.K. Charvadeh, S. Nejatinia, A.B. Khatibani et al., B Mater Sci (2022). https://doi.org/10.1007/s12034-021-02644-7

    Article  Google Scholar 

  2. K. Ramany, R. Shankararajan, K. Savarimuthu et al., Nanotechnology 33, 035713 (2021)

    Article  Google Scholar 

  3. Y. Luo, C. Zhang, B. Zheng et al., Int. J. Hydrog. Energy 42, 20386–20397 (2017)

    Article  CAS  Google Scholar 

  4. A.M. Pineda-Reyes, M.R. Herrera-Rivera, H. Rojas-Chavez et al., Sensors (Basel) 21, 4425 (2021)

    Article  CAS  Google Scholar 

  5. A. Hastir, N. Kohli, R.C. Singh, J. Phys. Chem. Solids 105, 23–34 (2017)

    Article  CAS  Google Scholar 

  6. B. Seddik, B. Salima, G. Houda, Mater. Today Commun. 29, 102805 (2021)

    Article  CAS  Google Scholar 

  7. M.A. Ciciliati, M.F. Silva, D.M. Fernandes et al., Mater. Lett. 159, 84–86 (2015)

    Article  CAS  Google Scholar 

  8. R.A.B. John, A. Ruban Kumar, J. Shruthi et al., Inorg. Chem. Commun. 141, 109506 (2022)

    Article  CAS  Google Scholar 

  9. Y. Chen, H. Li, D. Huang et al., Mater. Sci. Semiconduct. Process. 148, 106807 (2022)

    Article  CAS  Google Scholar 

  10. Y. Shen, Q. Li, T. Li et al., J. Mater. Sci.: Mater. Electron. 31, 3074–3083 (2020)

    CAS  Google Scholar 

  11. G. Qu, G. Fan, M. Zhou et al., ACS Omega 4, 4221–4232 (2019)

    Article  CAS  Google Scholar 

  12. N. Jain, S. Sharma, N.K. Puri, J. Mater. Sci.: Mater. Electron. 33, 1307–1323 (2021)

    Google Scholar 

  13. I. Jellal, K. Nouneh, R. Hatel et al., Adv Mater Process Technol 2022, 1–16 (2022)

    Google Scholar 

  14. Z. Zhu, F. Guo, Z. Xu et al., RSC Adv. 10, 11929–11938 (2020)

    Article  CAS  Google Scholar 

  15. J. Jayachandiran, J. Yesuraj, M. Arivanandhan et al., J. Inorg. Organomet. Polym Mater. 28, 2046–2055 (2018)

    Article  CAS  Google Scholar 

  16. M.A. Ashraf, Z. Liu, W. Peng et al., Anal. Chim. Acta 1051, 120–128 (2019)

    Article  CAS  Google Scholar 

  17. H. Abdollahi, M. Samkan, M.M. Hashemi, New J. Chem 43, 19253–19264 (2019)

    Article  Google Scholar 

  18. Y. Bakha, H. Khales, Acta Phys Pol A 136, 490–494 (2019)

    Article  CAS  Google Scholar 

  19. V. Van Cat, N.X. Dinh, V. Ngoc Phan et al., Mater. Today Commun 25, 101682 (2020)

    Article  Google Scholar 

  20. S. Öztürk, A. Kösemen, Z.A. Kösemen et al., Sens. Actuators B Chem. 222, 280–289 (2016)

    Article  Google Scholar 

  21. S. Sadhukhan, T.K. Ghosh, D. Rana et al., Mater. Res. Bull. 79, 41–51 (2016)

    Article  CAS  Google Scholar 

  22. Y. Shen, Q. Li, T. Li et al., J. Mater. Sci.: Mater. Electron. 31, 3074–3083 (2020)

    CAS  Google Scholar 

  23. Q. Li, Y. Shen, T. Li et al., Sens. Actuators B 314, 128032 (2020)

    Article  CAS  Google Scholar 

  24. N.F. Hamedani, A.R. Mahjoub, A.A. khodadadi et al., Sens. Actuators B 169, 67–73 (2012)

    Article  CAS  Google Scholar 

  25. F. Iskandar, O.B. Abdillah, E. Stavila et al., New. J. Chem. 42, 16362–16371 (2018)

    Article  CAS  Google Scholar 

  26. F. Ahmed, S. Kumar, N. Arshi et al., CrystEngComm 14, 5262 (2012)

    Article  Google Scholar 

  27. J. Liu, S. Li, B. Zhang et al., Sens. Actuators B 249, 715–724 (2017)

    Article  CAS  Google Scholar 

  28. X. Geng, P. Lu, C. Zhang et al., Sens. Actuators B 282, 690–702 (2019)

    Article  CAS  Google Scholar 

  29. J.C. Groen, L.A.A. Peffer, J. Pérez-Ramírez, Microporous Mesoporous Mater 60, 1–17 (2003)

    Article  CAS  Google Scholar 

  30. C. Prasad, K. Sreenivasulu, S. Gangadhara et al., J. Alloys Compd. 700, 252–258 (2017)

    Article  CAS  Google Scholar 

  31. W. Guo, B. Zhao, Q. Zhou et al., ACS Omega 4, 10252–10262 (2019)

    Article  CAS  Google Scholar 

  32. E. Raymundo-Piñero, K. Kierzek, J. Machnikowski et al., Carbon 44, 2498–2507 (2006)

    Article  Google Scholar 

  33. P. Cao, Y. Cai, D. Pawar et al., Chem. Eng. J. 401, 125491 (2020)

    Article  CAS  Google Scholar 

  34. S. Yi, J. Cui, S. Li et al., Appl. Surf. Sci. 319, 230–236 (2014)

    Article  CAS  Google Scholar 

  35. M. Asgharian, M. Mehdipourghazi, B. Khoshandam et al., Chem. Phys. Lett. 719, 1–7 (2019)

    Article  CAS  Google Scholar 

  36. S. Abbaspour, A. Nourbakhsh, R. Ebrahimi et al., Mater. Sci. Eng.: B 246, 89–95 (2019)

    Article  CAS  Google Scholar 

  37. C.B. Ong, A.W. Mohammad, L.Y. Ng, Environ Sci Pollut Res Int 26, 33856–33869 (2019)

    Article  CAS  Google Scholar 

  38. Y. Li, Q. Du, T. Liu et al., Chem. Eng. Res. Des. 91, 361–368 (2013)

    Article  CAS  Google Scholar 

  39. Y. Li, J. Ding, J. Chen et al., Mater. Res. Bull. 37, 313–318 (2002)

    Article  CAS  Google Scholar 

  40. K. Dave, K.H. Park, M. Dhayal, RSC Adv. 5, 95657–95665 (2015)

    Article  CAS  Google Scholar 

  41. J.I. Bueno-Lopez, C.H. Nguyen, J.R. Rangel-Mendez et al., Biodegradation 31, 35–45 (2020)

    Article  CAS  Google Scholar 

  42. J. Liu, H. Ren, Q.-J. Jiao et al., Integr. Ferroelectr. 152, 127–136 (2014)

    Article  CAS  Google Scholar 

  43. D. Lee, M. Yoo, H. Seo et al., Sens. Actuators B Chem. 135, 444–448 (2009)

    Article  CAS  Google Scholar 

  44. M. Kinoshita, S.A. Kulinich, K. Noda et al., Sens. Mater 30, 2773 (2018)

    CAS  Google Scholar 

  45. B. Georgieva, H. Nichev, M. Petrov et al., J. Phys. Conf. Ser. 992, 012026 (2018)

    Article  Google Scholar 

  46. N.T. Vinh, N.T. Hai, T. Van Dang et al., Sens. Actuator A Phys. 332, 113093 (2021)

    Article  CAS  Google Scholar 

  47. S.E.R. Diltemiz, K. Ecevit, J. Alloys Compd. 783, 608–616 (2019)

  48. O. Alev, N. Sarıca, O. Özdemir et al., J. Alloys Compd. 826, 154177 (2020)

    Article  CAS  Google Scholar 

  49. A. Kösemen, S. Öztürk, Z. Şen et al., J. Electrochem. Soc. 164, B657–B664 (2017)

    Article  Google Scholar 

  50. A. Mishra, Mater. Res. Bull. 108, 207–213 (2018)

    Article  CAS  Google Scholar 

  51. S. Liang, J. Zhu, J. Ding et al., Appl. Surf. Sci. 357, 1593–1600 (2015)

    Article  CAS  Google Scholar 

  52. S. Gupta Chatterjee, S. Chatterjee, A.K. Ray et al., Sens. Actuators B 221, 1170–1181 (2015)

    Article  CAS  Google Scholar 

  53. Z. Wang, S. Gao, T. Fei et al., ACS Sens. 4, 2048–2057 (2019)

    Article  CAS  Google Scholar 

  54. W. Li, R. Chen, W. Qi et al., ACS Sens. 4, 2809–2818 (2019)

    Article  CAS  Google Scholar 

  55. M. Chen, Z. Wang, D. Han et al., J. Phys. Chem. C 115, 12763–12773 (2011)

    Article  CAS  Google Scholar 

  56. V. Khorramshahi, J. Karamdel, R. Yousefi, Ceram. Int. 45, 7034–7043 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (No. 11775139), Shanghai City Committee of Science and Technology (15520500200) and Cooperation Fund of Jiangsu Zhongzheng Ceramic Technology Company.

Author information

Authors and Affiliations

Authors

Contributions

ML contributed to investigation, conceptualization, and writing - original draft. YS contributed to writing - review & editing, and supervision. YZ contributed to investigation and data curation. FG contributed to project administration and resources. LW contributed to supervision and resources.

Corresponding author

Correspondence to Yue Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Shen, Y., Zhang, Y. et al. Improved sensing performance of Fe-ZnO/GO mesoporous composites based on QCM. J Mater Sci: Mater Electron 34, 79 (2023). https://doi.org/10.1007/s10854-022-09435-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09435-8

Navigation