Log in

Study on the structure and magnetic transformation of magnesium substituted cobalt spinel-type ferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, magnesium substitute cobalt ferrite with chemical formula Co1−xMgxFe2O4 (x = 0.0, 0.25, 0.5, 0.75, 1.0) was prepared by sol–gel method. The prepared ferrite powder was characterized in a series of ways. X-ray diffraction (XRD) shows that the samples have a single-phase cubic spinel structure, and the structural parameters of the samples are different with the ion distribution. Fourier transform infrared spectroscopy (FTIR) can further verify the spinel structure of ferrite and analyze the elastic modulus of the prepared material. Beyond that, the completeness of chemical reactions can be determined by the information of functional groups. A scanning electron microscope (SEM) was used to monitor the morphology of the sample, which also showed that the samples were evenly distributed and agglomerated due to magnetic influence. Energy dispersive spectrometers (EDS) show that the elemental composition of the substance corresponds to a chemical formula and is free of other impurities. Vibrating sample magnetometer (VSM) shows that non-magnetic Mg2+ can replace magnetic Co2+, which changes the interaction intensity and magnetic order between sites, thus changing the magnetic properties of samples, and realizing the magnetic transition from ferromagnetism to superparamagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. Data sharing and data citation is encouraged.

References

  1. D.R. Mane, U.N. Devatwal, K.M. Jadhav, Structural and magnetic properties of aluminum and chromium co-substituted cobalt ferrite. Mater. Lett. 91, 44 (2000)

    Google Scholar 

  2. L.B. Kong, Z.W. Li, G.Q. Lin, Y.B. Gan, Magneto-dielectric properties of Mg–Cu–Co ferrite ceramics: I. Densification behavior and microstructure development. J. Am. Ceram. Soc. 3106, 90 (2007)

    Google Scholar 

  3. Y. Konseoglu, H. Kavas, B. Aktas, Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles. Phys. Stat. Sol. (a) 1595, 203 (2006)

    Google Scholar 

  4. W. Zhang, H. Wang, F. Zhang, Z. Qian, W. Su, Effect of surface modifications on the magnetic properties of Ni0.5Zn0.5Fe2O4 nanoparticles. J. Mater. Sci. Technol. 547, 6 (2010)

    Google Scholar 

  5. M. Siva Ram Prasad, B.B.V.S.V. Prasad, B. Rajesh, K.H. Rao, K.V. Ramesh, Magnetic properties and DC electrical resistivity studies on cadmium substituted nickel-zinc ferrite system. J. Magn. Magn. Mater. 2115, 323 (2011)

    Google Scholar 

  6. S. Singhal, S.K. Barthwal, K. Chandra, Structural, magnetic and Mössbauer spectral studies of nano size aluminum substituted nickel zinc ferrites. J. Magn. Magn. Mater. 94, 296 (2006)

    Google Scholar 

  7. K.R. Krishna, D. Ravinder, K.V. Kumar, ACh. Lincon, Synthesis, XRD & SEM studies of zinc substitution in nickel ferrites by citrate gel technique. J. Phys. Condens. Matter. 153, 2 (2012)

    Google Scholar 

  8. J.L. Dormann, M. Nogues, Magnetic structures of substituted ferrites. J. Phys. Condens. Matter. 1223, 2 (1990)

    Google Scholar 

  9. L. Wang, B.K. Rai, S.R. Mishra, Structural and magnetic study of Al3+ doped Ni0.75Zn0.25Fe2−xAlxO4 nanoferrites. Mater. Res. Bull. 183, 65 (2015)

    Google Scholar 

  10. A.A. Ati, Z. Othaman, A. Samavati, F.Y. Doust, Structural and magnetic properties of Co–Al substituted Ni ferrites synthesized by co-precipitation method. J. Mol. Struct. 1058, 136–141 (2014)

    Article  CAS  Google Scholar 

  11. V. Sepelak, K.D. Becker, Mössbauer studies in the mechanochemistry of spinel ferrites. J. Mater. Synth. Process. 155–166, 8 (2000)

    Google Scholar 

  12. Y. Köseoğlu, M. Bay, M. Tan, A. Baykal, H. Sözeri, R. Topkaya, N. Akdoğan, Magnetic and dielectric properties of Mn0.2Ni0.8Fe2O4 nanoparticles synthesized by PEG-assisted hydrothermal method. J. Nanopart. Res. 2235, 13 (2011)

    Google Scholar 

  13. A. Goldman, Modern Ferrite Technology (Marcel Dekker, New York, 1993)

    Google Scholar 

  14. M. Pardavi-Horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. 171, 215 (2000)

    Google Scholar 

  15. K. Rathod, P. Kamble, K. Sanadi, G. Kamble, M. Guar, K. Garadkar, Photovoltaic application study of zinc telluride thin films grown by chemical bath deposition method. Adv. Mater. Phys. Chem. 11, 131–144 (2021). https://doi.org/10.4236/ampc.2021.118013

    Article  CAS  Google Scholar 

  16. K.C. Rathod, K.R. Sanadi, P.D. Kamble, G.S. Kamble, M.L. Gaur, K.M. Garadkar, Photovoltaic solar application study of Cu0.5Zn0.5Se thin films by chemical bath deposition method. Mater. Res. (2022). https://doi.org/10.1590/1980-5373-mr-2021-0259

    Article  Google Scholar 

  17. S. Pavithradevi, N. Suriyanarayanan, T. Boobalan, Synthesis and characterization of polyol-assisted nano Cu0.2Ni0.2Sn0.2Ba0.4Fe2O4 by a wet hydroxyl route. J. Magn. Magn. Mater. 426, 137–143 (2017)

    Article  CAS  Google Scholar 

  18. A.T. Raghavender, K.M. Jadhav, Dielectric properties of Al-substituted Co ferrite nanoparticles. Bull. Mater. Sci. 32, 575–578 (2009)

    Article  CAS  Google Scholar 

  19. G. Aravind, M. Raghasudha, D. Ravinder, Synthesis, characterization and FC–ZFC magnetization studies of cobalt substituted lithium nano ferrites. J. Magn. Magn. Mater. 378, 278–284 (2015)

    Article  CAS  Google Scholar 

  20. M. Mozaffari, V. Amighian, V. Darsheshdar, The effect of cobalt substitution magnetic hardening of magnetite. J. Mag. Magn. Mater. 350, 119–124 (2014)

    Article  Google Scholar 

  21. Qu. Yuqiu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater. Lett. 60, 3548 (2006)

    Article  Google Scholar 

  22. Z. Ahmad et al., Structural and complex impedance spectroscopic studies of Mg-substituted CoFe2O4. Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.08.154

    Article  Google Scholar 

  23. V. Kuncser, G. Schinteie, B. Sahoo, W. Keune, D. Bica, L. Vekas, G. Filoti, Magnetic interactions in water based ferrofluids studied by Mössbauer spectroscopy. J. Phys. Condens. Matter. 016205, 19 (2007)

    Google Scholar 

  24. V.D. Sudheesh, N. Thomas, N. Roona, H. Choudhary, B. Sahoo, N. Lakshmi, V. Sebastian, Synthesis of nanocrystalline spinel ferrite (MFe2O4, M=Zn and Mg) by solution combustion method: influence of fuel to oxidizer ratio. J. Alloys. Compd. 577, 742 (2018)

    Google Scholar 

  25. S.A. Oliver, R.J. Willey, H.H. Hamdeh, G. Oliveri, G. Busca, Structure and magnetic properties of magnesium ferrite fine powders. Scr. Metall. Mater. 1695, 33 (1995)

    Google Scholar 

  26. G. Busca, E. Finocchio, V. Lorenzelli, M. Trombetta, S.A. Rossini, IR study of alkene allylic activation on magnesium ferrite and alumina catalysts. Faraday Trans. 4687, 92 (1996)

    Google Scholar 

  27. A. Franco, M.S. Silva, High temperature magnetic properties of magnesium ferrite nanoparticles. J. Appl. Phys. 10, 109 (2011)

    Google Scholar 

  28. R. Ali, A. Mahmood, M.A. Khan, A.H. Chughtai, M. Shahid, I. Shakir, M.F. Warsi, Impacts of Ni-Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method. J. Alloys. Compd. 363, 584 (2014)

    Google Scholar 

  29. M.J. Iqbal, Z. Ahmad, T. Meydan, I.C. Nlebedim, Influence of Ni–Cr substitution on the magnetic and electric properties of magnesium ferrite nanomaterials. Mater. Res. Bull. 344, 47 (2012)

    Google Scholar 

  30. A.A. Ati, Z. Othaman, A. Samavati, F.Y. Doust, Structural and magnetic properties of Co–Al substituted Ni ferrites synthesized by co-precipitation method. J. Mol. Struct. 136, 1058 (2014)

    Google Scholar 

  31. M.A. Ahmed, E. Ateia, S.I. El-Dek, Spectroscopic analysis of ferrite doped with different rare earth elements. Vib. Spectrosc. 69, 30 (2002)

    Google Scholar 

  32. E. Ateia, M.A. Ahmed, A.K. El-Aziz, Effect of rare earth radius and concentration on the structural and transport properties of doped Mn–Zn ferrite. J. Magn. Magn. Mater. 545, 311 (2007)

    Google Scholar 

  33. T. Ramachandran, K. Vishista, Combustion synthesis of Mg–Er ferrite nanoparticles:cation distribution and structural, optical, and magnetic properties. Mater. Sci. Semicond. Process. 631, 40 (2015)

    Google Scholar 

  34. A. Manikandan, J. Judith Vijaya, L. John Kennedy, M. Bououdina, Microwave combustion synthesis, structural, optical and magnetic properties of Zn1−xSrxFe2O4 nanoparticles. Ceram. Int. 5910, 39 (2013)

    Google Scholar 

  35. J. Sharma, N. Sharma, J. Parashar, V.K. Saxena, D. Bhatnagar, K.B. Sharma, Dielectric properties of nanocrystalline Co-Mg ferrite. J. Alloys Compd. 649, 362–367 (2015)

    Article  CAS  Google Scholar 

  36. P. Jadoun, J. Sharma, S. Kumar, S.N. Dolia, D. Bhatnagar, V.K. Saxena, Structural and magnetic behavior of nanocrystalline Cr doped Co-Mg ferrite. Ceram. Int. 6748, 44 (2018)

    Google Scholar 

  37. A. Franco Jr., F.C. e Silva, V.S. Zapf, High temperature magnetic properties of Co1−xMgxFe2O4 nanoparticles prepared by forced hydrolysis method. J. Appl. Phys. 111, 07B530 (2012)

    Article  Google Scholar 

  38. H.S. Mund, B.L. Ahuja, Structural and magnetic properties of Mg doped cobalt ferrite nano particles prepared by sol-gel method. Mater. Res. Bull. 228, 85 (2017)

    Google Scholar 

  39. S.V. Bhandare, R. Kumar, A.V. Anupama, M. Mishra, R. Vijaya Kumar, V.M. Jali, B. Sahoo, Effect of Mg-substitution in Co–Ni-Ferrites: cation distribution and magnetic properties. Mater. Chem. Phys. 3, 251 (2020)

    Google Scholar 

  40. K. Krieble, T. Schaefer, J.A. Paulsen et al., Mössbauer spectroscopy investigation of Mn-substituted Co-ferrite (CoMnxFe2−xO4). J. Appl. Phys. 97, 10F101-12 (2005)

    Article  Google Scholar 

  41. R.V. Kumar, A.V. Anupama, R. Kumar, H.K. Choudhary, V.B. Khopkar, G. Aravind, B. Sahoo, Cation distributions and magnetism of Al-substituted CoFe2O4-NiFe2O4 solid solutions synthesized by sol-gel auto-combustion method. Ceram. Int. 20709, 44 (2018)

    Google Scholar 

  42. N. Thomas, P.V. Jithinb, V.D. Sudheesh, V. Sebastian, Magnetic and dielectric properties of magnesium substituted cobalt ferrite samples synthesized via one step calcination free solution combustion method. Ceram. Int. 7306, 43 (2017)

    Google Scholar 

  43. L. George, C. Viji, M. Maheen, E.M. Mohammed, Enhanced magnetic properties at low temperature of Mn substituted Ni-Zn mixed ferrite doped with Gd ions for magnetoresistive applications. Mater. Res. Bull. 3, 110833 (2020)

    Article  Google Scholar 

  44. M. Arunabha, Roy, Formation and stability of nanosized, undercooled propagating intermediate melt during β→δ phase transformation in HMX. Nanocrystal. 1, 56001 (2021)

    Google Scholar 

  45. V.G. Patil, S.E. Shirsath, S.D. More, S.J. Shuklac, K.M. Jadhav, Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J. Alloys Compd. 200, 488 (2009)

    Google Scholar 

  46. A.M. Roy, Energetics and kinematics of undercooled nonequilibrium interfacial molten layer in cyclotetramethylene-tetranitramine crystal. Physica B 1, 412986 (2021)

    Article  Google Scholar 

  47. W.R. Agami, Effect of neodymium substitution on the electric and dielectric propertiesof Mn-Ni-Zn ferrite. Physica B 534, 17–21 (2018)

    Article  CAS  Google Scholar 

  48. M.A. Khan, M.U. Islam, M. Ishaque, I.Z. Rahman, A. Genson, S. Hampshire, Structural and physical properties of Ni-Tb-Fe-O system. Mater. Charact. 60, 73–78 (2009)

    Article  CAS  Google Scholar 

  49. S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.M. Patange, S.J. Shukla, K.M. Jadhav, Structural properties and cation distribution of Co-Zn nanoferrites. Int. J. Mod. Phys. B 23, 5629–5638 (2009)

    Article  CAS  Google Scholar 

  50. P. Scherrer, Göttinger Nachrichten Gesell, vol. 2 (Springer, Berlin, 1918), pp. 98–100

  51. M. Anis-ur-Rehman, M.A. Malik, K. Khan, A. Maqsood, Structural and magnetic properties of nanocrystalline Mg–Co ferrites. J. Nano Res. 14, 1–9 (2011)

    Article  CAS  Google Scholar 

  52. H.M. Zaki, S. Al-Heniti, T.A. Elmosalami, Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.01.304

    Article  Google Scholar 

  53. K.B. Modi, J.D. Gajera, M.C. Chhantbar, K.G. Saija, G.J. Baldha, H.H. Joshi, Structural properties of magnesium and aluminium co-substituted lithium ferrite. Mater. Lett. 4053, 4049–4053 (2003)

    Article  Google Scholar 

  54. M. Kaur, P. Jain, M. Singh, Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co0.6−xMgxZn0.4Fe2O4 (x=0.0, 0.2, 0.4, 0.6) ferrite nanoparticles. Mater. Chem. Phys. 335, 332–339 (2015)

    Article  Google Scholar 

  55. R.M. Rosnan, Z. Othaman, R. Hussin, A.A. Ati, A. Samavati, S. Dabagh, S. Zare, Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5−xMgxFe2O4 nanoparticle ferrites. Chin. Phys. B 5, 047501 (2016)

    Article  Google Scholar 

  56. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)

    Article  CAS  Google Scholar 

  57. O.L. Anderson, in Physics Acoustics, vol. 3BC, ed. by W.P. Mason (Academic Press, New York, 1965), p.45

    Google Scholar 

  58. C.N.R. Rao, J. Gopalkrishnan, New Directions in Solid State Chemistry (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  59. M. Kurian, S. Thankachan, D.S. Nair, A. E. K., A. Babu, A. Thomas, B. Krishna K. T., Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods. J. Adv. Ceram. 4(3), 199–205 (2015)

    Article  CAS  Google Scholar 

  60. E.E. Ateia, A.A.H. El-Bassuony, G. Abdellatif, A.T. Mohamed, The impact of Ni substitution on the structural and magnetic properties of Mg nano-ferrite. J. Silicon 10, 1687 (2018)

    Article  CAS  Google Scholar 

  61. Hu. **, H.-b Yang, D.-a Pan, H. Wang, J.-J. Tian, S.-G. Zhang, X.-F. Wang, A.A. Volinsky, Heat treatment effects on microstructure and magnetic properties of Mn–Zn ferrite powders. J. Magn. Magn. Mater. 176, 322 (2010)

    Google Scholar 

  62. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Effect of Ni do** on structural and magnetic properties of Co1–xNixFe1.9Mn0.1O4. J. Magn. Magn. Mater. 322, 718–726 (2010)

    Article  CAS  Google Scholar 

  63. J.M.D. Coey, Rare-Earth Iron Permanent Magnets, vol. 45 (Oxford University Press, Oxford, 1996), p.5526

    Google Scholar 

  64. J.M.D. Coey, Rare earth-iron permanent magnets. J. Cheminformatics. (2010). https://doi.org/10.1002/chin.199211311

    Article  Google Scholar 

  65. J. Park, K. An, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kim et al., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891 (2004)

    Article  CAS  Google Scholar 

  66. S. Bhukal, T. Namgyal, S. Mor, S. Bansal, S. Singhal, Structural, electrical, optical and magnetic properties of chromium substituted Co-Zn nanoferrites Cu0.6Zn0.4CrxFe2−xO4 (0≤x≤1.0) prepared via sol-gel Au-to-combustion method. J. Mol Struct. 1012, 12–167 (2012)

    Article  Google Scholar 

  67. I. Panneer Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ do** in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 774, 322 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XH contributed to experiment, conceptualization, investigation, writing-original draft, and visualization; AS checked the manuscript; JW and YJ helped checking the tables and figures.

Corresponding author

Correspondence to Aimin Sun.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest with other institutions (financial or non-financial, directly or indirectly related to work, in all scientific fields).

Ethical approval

The author states that the manuscript complies with the ethical rules applicable to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Sun, A., Wang, J. et al. Study on the structure and magnetic transformation of magnesium substituted cobalt spinel-type ferrite. J Mater Sci: Mater Electron 34, 190 (2023). https://doi.org/10.1007/s10854-022-09401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09401-4

Navigation