Log in

Hierarchical granular morphology of MoS2-RGO nanocomposite for electrochemical sensing of ascorbic-acid

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrochemical sensing is one of the most powerful tools used for the detection of toxic reagents or for examining health issues. In the present work, we have studied the effect of reduced graphene oxide (RGO) in MoS2-RGO nanocomposite for sensing of ascorbic acid. For synthesizing MoS2-RGO nanocomposite, an in-situ microwave-assisted technique has been used and further confirmation of the formation of nanocomposites is done by using field emission scanning electron microscopy, X-ray diffraction, and Raman Spectroscopy. Electrochemical measurements are taken by cyclic voltammetry, differential pulse voltammetry (DPV), and impedance spectroscopy (EIS). Designed sensing material has displayed a noticeable linear increase of current with the concentration of the analyte. It has shown a very precise limit of detection of ~ 0.43 µM/0.16 μM and a remarkable sensitivity of ~ 2.9 µAµM−1 cm−2/1508 Ω μM−1 cm−2 with DPV/EIS. An inductive behavior observed in the Nyquist plots, due to the intercalation process on the surface of the electrode and dissociation of analyte in the buffer solution, was found responsible for the remarkable sensing demeanor of MoS2-RGO@GCE towards ascorbic-acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and the datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Bilal, A. Akbar, A.-U.-H.A. Shah, Highly selective and reproducible electrochemical sensing of ascorbic acid through a conductive polymer coated electrode. Polymers 11, 1346 (2019)

    Article  CAS  Google Scholar 

  2. S. Li, Y. Ma, Y. Liu, G. **n, M. Wang, Z. Zhang, Z. Liu, Electrochemical sensor based on a three dimensional nanostructured MoS2 nanosphere-PANI/reduced graphene oxide composite for simultaneous detection of ascorbic acid, dopamine, and uric acid. RSC Adv. 9(6), 2997–3003 (2019)

    Article  CAS  Google Scholar 

  3. A.K. Barui, R. Sharma, Y.S. Rajput, S. Singh, A rapid paper chromatographic method for detection of anionic detergent in milk. J. Food Sci. Technol. 50, 826–829 (2013)

    Article  CAS  Google Scholar 

  4. J. Dostálek, J. Přibyl, J. Homola, P. Skládal, Multichannel SPR biosensor for detection of endocrine-disrupting compounds. Anal. Bioanal. Chem. 389, 1841–1847 (2007)

    Article  CAS  Google Scholar 

  5. G.A. Ibañez, G.M. Escandar, Luminescence sensors applied to water analysis of organic pollutants—an update. Sensors 11, 11081–11102 (2011)

    Article  Google Scholar 

  6. A. Mishra, R. Dheepika, P.A. Parvathy, P.M. Imran, N.S.P. Bhuvanesh, S. Nagarajan, Fluorescence quenching based detection of nitroaromatics using luminescent triphenylamine carboxylic acids. Sci. Rep. 11, 1–10 (2021)

    Article  CAS  Google Scholar 

  7. X. Zhang, Y. Cao, S. Yu, F. Yang, P. **, An electrochemical biosensor for ascorbic acid based on carbon-supported PdNi nanoparticles. Biosens. Bioelectron. 44, 183–190 (2013)

    Article  CAS  Google Scholar 

  8. J. Yan, S. Liu, Z. Zhang, G. He, P. Zhou, H. Liang, L. Tian, X. Zhou, H. Jiang, Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd–Pt nanoparticles. Colloids Surf. B 111, 392–397 (2013)

    Article  CAS  Google Scholar 

  9. C. Zhou, S. Li, W. Zhu, H. Pang, H. Ma, A sensor of a polyoxometalate and Au–Pd alloy for simultaneously detection of dopamine and ascorbic acid. Electrochim. Acta 113, 454–463 (2013)

    Article  CAS  Google Scholar 

  10. D. Li, X. Liu, R. Yi, J. Zhang, Z. Su, G. Wei, Electrochemical sensor based on novel two-dimensional nanohybrids: MoS2 nanosheets conjugated with organic copper nanowires for simultaneous detection of hydrogen peroxide and ascorbic acid. Inorg. Chem. Front. 5, 112–119 (2018)

    Article  CAS  Google Scholar 

  11. A. Sinha, Dhanjai, B. Tan, Y. Huang, H. Zhao, X. Dang, J. Chen, R. Jain, MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: a review. TrAC Trends Anal. Chem. 102, 75–90 (2018)

    Article  CAS  Google Scholar 

  12. E. Akbari, K. Jahanbin, A. Afroozeh, P. Yupapin, Z. Buntat, Brief review of monolayer molybdenum disulfide application in gas sensor. Physica B 545, 510–518 (2018)

    Article  CAS  Google Scholar 

  13. J.-W. Jiang, Graphene versus MoS2: a short review. Front. Phys. 10, 287–302 (2015)

    Article  CAS  Google Scholar 

  14. N.A. Kumar, M.A. Dar, R. Gul, J.-B. Baek, Graphene and molybdenum disulfide hybrids: synthesis and applications. Mater. Today 18, 286–298 (2015)

    Article  CAS  Google Scholar 

  15. F. Wypych, T. Weber, R. Prins, Scanning tunneling microscopic investigation of Kx(H2O)yMoS2. Surf. Sci. 380, L474–L478 (1997)

    Article  Google Scholar 

  16. X. Gan, L.Y.S. Lee, K.-Y. Wong, T.W. Lo, K.H. Ho, D.Y. Lei, H. Zhao, 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of S vacancies. ACS Appl. Energy Mater. 1, 4754–4765 (2018)

    Article  CAS  Google Scholar 

  17. S.H. El-Mahalawy, B.L. Evans, The thermal expansion of 2H-MoS2, 2H-MoSe2 and 2H-WSe2 between 20 and 800°C. J. Appl. Crystallogr. 9, 403–406 (1976)

    Article  Google Scholar 

  18. R.M.A. Khalil, F. Hussain, A.M. Rana, M. Imran, G. Murtaza, Comparative study of polytype 2H-MoS2 and 3R-MoS2 systems by employing DFT. Physica E: Low-dimens. Syst. Nanostruct. 106, 338–345 (2019)

    Article  CAS  Google Scholar 

  19. Y. Tokura, N. Nagaosa, Orbital physics in transition-metal oxides. Science 288, 462–468 (2000)

    Article  CAS  Google Scholar 

  20. F. Chen, W. Su, S. Zhao, Y. Lv, S. Ding, L. Fu, Morphological evolution of atomically thin MoS2 flakes synthesized by a chemical vapor deposition strategy. CrystEngComm 22, 4174–4179 (2020)

    Article  CAS  Google Scholar 

  21. H. Gómez-Pozos, J. González-Vidal, G. Torres, M. Olvera, L. Castañeda, Physical characterization and effect of effective surface area on the sensing properties of tin dioxide thin solid films in a propane atmosphere. Sensors 14, 403–415 (2013)

    Article  CAS  Google Scholar 

  22. A.K. Gautam, M. Faraz, N. Khare, Enhanced thermoelectric properties of MoS2 with the incorporation of reduced graphene oxide (RGO). J. Alloys Compd. 838, 155673 (2020)

    Article  CAS  Google Scholar 

  23. D. Gupta, V. Chauhan, R. Kumar, A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: past and recent developments. Inorg. Chem. Commun. 121, 108200 (2020)

    Article  CAS  Google Scholar 

  24. G. Solomon, R. Mazzaro, V. Morandi, I. Concina, A. Vomiero, Microwave-assisted vs. conventional hydrothermal synthesis of MoS2 nanosheets: application towards hydrogen evolution reaction. Curr. Comput.-Aided Drug Des. 10, 1040 (2020)

    CAS  Google Scholar 

  25. J. Kudr, V. Adam, O. Zitka, Fabrication of graphene/molybdenum disulfide composites and their usage as actuators for electrochemical sensors and biosensors. Molecules 24, 3374 (2019)

    Article  CAS  Google Scholar 

  26. B. Rawat, K.K. Mishra, U. Barman, L. Arora, D. Pal, R.P. Paily, Two-dimensional MoS2-based electrochemical biosensor for highly selective detection of glutathione. IEEE Sens. J. 20, 6937–6944 (2020)

    Article  CAS  Google Scholar 

  27. X. Qiao, K. Li, J. Xu, N. Cheng, Q. Sheng, W. Cao, T. Yue, J. Zheng, Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-MoS2 nanoconjugates. Biosens. Bioelectron. 113, 142–147 (2018)

    Article  CAS  Google Scholar 

  28. R. Aswathi, K.Y. Sandhya, Ultrasensitive and selective electrochemical sensing of Hg(ii) ions in normal and sea water using solvent exfoliated MoS2: affinity matters. J. Mater. Chem. A 6, 14602–14613 (2018)

    Article  CAS  Google Scholar 

  29. M.D. Petit-Domínguez, C. Quintana, L. Vázquez, M. del Pozo, I. Cuadrado, A.M. Parra-Alfambra, E. Casero, Synergistic effect of MoS2 and diamond nanoparticles in electrochemical sensors: determination of the anticonvulsant drug valproic acid. Microchim. Acta 185, 1–10 (2018)

    Article  CAS  Google Scholar 

  30. S.Y. Park, J.E. Lee, Y.H. Kim, J.J. Kim, Y.-S. Shim, S.Y. Kim, M.H. Lee, H.W. Jang, Room temperature humidity sensors based on rGO/MoS2 hybrid composites synthesized by hydrothermal method. Sens. Actuators B Chem. 258, 775–782 (2018)

    Article  CAS  Google Scholar 

  31. H.-Y. Chen, J. Wang, L. Meng, T. Yang, K. Jiao, Thin-layered MoS2/polyaniline nanocomposite for highly sensitive electrochemical detection of chloramphenicol. Chin. Chem. Lett. 27, 231–234 (2016)

    Article  CAS  Google Scholar 

  32. Y. Yang, Q. Lei, J. Li, C. Hong, Z. Zhao, H. Xu, J. Hu, Synthesis and enhanced electrochemical properties of AuNPs@MoS2/rGO hybrid structures for highly sensitive nitrite detection. Microchem. J. 172, 106904 (2022)

    Article  CAS  Google Scholar 

  33. R. Sha, N. Vishnu, S. Badhulika, MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of Uric acid in human urine samples. Sens. Actuators B Chem. 279, 53–60 (2019)

    Article  CAS  Google Scholar 

  34. L. **ng, Z. Ma, A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim. Acta 183, 257–263 (2015)

    Article  CAS  Google Scholar 

  35. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.-W. Liu, C.H. Voon, Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017)

    Article  CAS  Google Scholar 

  36. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010)

    Article  CAS  Google Scholar 

  37. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2007)

    Article  CAS  Google Scholar 

  38. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  CAS  Google Scholar 

  39. H.-Y. He, One-step assembly of 2H–1T MoS2:Cu/reduced graphene oxide nanosheets for highly efficient hydrogen evolution. Sci. Rep. 7, 1–7 (2017)

    CAS  Google Scholar 

  40. R. Wang, S. Gao, K. Wang, M. Zhou, S. Cheng, K. Jiang, MoS2@rGO nanoflakes as high performance anode materials in sodium ion batteries. Sci. Rep. 7, 1–9 (2017)

    CAS  Google Scholar 

  41. N. Karikalan, R. Karthik, S.-M. Chen, H.-A. Chen, A voltammetric determination of caffeic acid in red wines based on the nitrogen doped carbon modified glassy carbon electrode. Sci. Rep. 7, 1–10 (2017)

    Article  CAS  Google Scholar 

  42. A.A. Odeh, Y. Al-Douri, C.H. Voon, R.M. Ayub, S.C.B. Gopinath, R.A. Odeh, M. Ameri, A. Bouhemadou, A needle-like Cu2CdSnS4 alloy nanostructure-based integrated electrochemical biosensor for detecting the DNA of Dengue serotype 2. Microchim. Acta 184, 2211–2218 (2017)

    Article  CAS  Google Scholar 

  43. Y. Wei, Y. Liu, Z. Xu, S. Wang, B. Chen, D. Zhang, Y. Fang, Simultaneous detection of ascorbic acid, dopamine, and uric acid using a novel electrochemical sensor based on palladium nanoparticles/reduced graphene oxide nanocomposite. Int. J. Anal. Chem. 2020, 1–13 (2020)

    Article  CAS  Google Scholar 

  44. J. Bisquert, H. Randriamahazaka, G. Garcia-Belmonte, Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry. Electrochim. Acta 51, 627–640 (2005)

    Article  CAS  Google Scholar 

  45. M. Saraf, K. Natarajan, S.M. Mobin, Emerging robust heterostructure of MoS2–rGO for high-performance supercapacitors. ACS Appl. Mater. Interfaces 10, 16588–16595 (2018)

    Article  CAS  Google Scholar 

  46. X. Fan, Z. Li, S. Wang, L. Liu, P. Liu, F. Chen, X. Zheng, Electrochemical impedance biosensor for the determination of lipopolysaccharide using peptide as the recognition molecule. J Braz Chem Soc 30, 1762–1768 (2019)

    CAS  Google Scholar 

  47. H. Sun, J. Chao, X. Zuo, S. Su, X. Liu, L. Yuwen, C. Fan, L. Wang, Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv. 4, 27625 (2014)

    Article  CAS  Google Scholar 

  48. M. Huang, Electrochemical sensor for detection of ascorbic acid based on MoS2-AuNPs modified glassy carbon electrode. Int. J. Electrochem. Sci. 16, 151014 (2021)

    Article  CAS  Google Scholar 

  49. A. Gülden, H. Çelikkan, ASKORBİK ASİTİN MoS2 ESASLI ELEKTROTLA ELEKTROKİMYASAL TAYİNİ. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi (2017). https://doi.org/10.17341/gazimmfd.337608

    Article  Google Scholar 

  50. M. Saraf, K. Natarajan, A.K. Saini, S.M. Mobin, Small biomolecule sensors based on an innovative MoS2–rGO heterostructure modified electrode platform: a binder-free approach. Dalton Trans. 46, 15848–15858 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to Central Instrumentation Facility, Division of Research and Development, Lovely Professional University for providing research facilities. The funds provided by Lovely Professional University, under the scheme LPU/DRDSEED/SAC/65 are also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

SS synthesized the material and done its optimization. PK made substantial contributions towards conceptualization and designing of the problem. SJ is responsible for the acquisition, analysis, and interpretation of data. KSS articulated and supervised the problem.

Corresponding author

Correspondence to Kawaljeet Singh Samra.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Kumar, P., Jabeen, S. et al. Hierarchical granular morphology of MoS2-RGO nanocomposite for electrochemical sensing of ascorbic-acid. J Mater Sci: Mater Electron 33, 21048–21059 (2022). https://doi.org/10.1007/s10854-022-08909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08909-z

Navigation