Log in

Synthesis and characterization of red emission phosphor NaY(WO4)2:Eu3+ with La3+-doped

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of novel red-emitting Na(LaxEuyY1−xy)(WO4)2 phosphors were successfully synthesized using the high-temperature solid-state method. The crystal structure and morphology of the phosphor were characterized by XRD, SEM and infrared absorption spectroscopy. Because of the larger ionic radius and stronger polarizability of La3+, the W–O bond length is changed and the lattice is enlarged. The energy band structure of the phosphor was calculated and estimated by using the Density functional theory. The band gap energy of NaLa(WO4)2 host is 4.51 eV, which is greater than the 4.44 eV of NaY (WO4)2 host. The excitation spectra and emission spectrum of the sample were tested, which confirmed that the introduction of La3+ ions changed the energy transfer mechanism of the phosphor. The 5D0 level radiative transition lifetime and CIE chromaticity coordinates of the samples were calculated. The experimental results show that La3+ do** can change the energy transfer process of Eu3+, and then realize the regulation of red emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are not publicly available due [them containing information that could compromise research participant privacy/consent] but are available from the corresponding author on reasonable request.].

References

  1. Y. Wang, L. Luo, R. Guo, H. **ong, M.Y. Gao, A study on site preferences of Eu3+ dopants in La3+, Ca2+ sites of La2CaB8O16 crystal. J. Lumin. 219, 116923 (2020)

    Article  CAS  Google Scholar 

  2. X. Zhang, Z. Zhu, Z. Guo, Z. Sun, Z. Yang, T. Zhang, J. Zhang, Z.C. Wu, Z. Wang, Dopant preferential site occupation and high efficiency white emission in K2BaCa(PO4)2:Eu2+, Mn2+ phosphors for high quality white LED applications. Inorg. Chem. Front. 6(5), 1289–1298 (2019)

    Article  CAS  Google Scholar 

  3. Q. Li, R. Cong, X. Zhou, W. Gao, T. Yang, Ba6(Bi1−xEux)9B79O138 (0 ≤ x ≤ 1): synergetic changing of the wavelength of Bi3+ absorption and the red-to-orange emission ratio of Eu3+. J. Mater. Chem. C 3(26), 6836–6843 (2015)

    Article  CAS  Google Scholar 

  4. T. Yaba, R. Wangkhem, N.S. Singh, Enhanced red emission from Bi3+ sensitized CaWO4:Eu3+ as red component for near UV/blue LED pumped white light emission. J. Alloy. Compd. 843, 156022 (2020)

    Article  CAS  Google Scholar 

  5. J. Qiao, L. Ning, M.S. Molokeev, Y.C. Chuang, Q. Liu, Z. **a, Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence. J. Am. Chem. 140(30), 9730–9736 (2018)

    Article  CAS  Google Scholar 

  6. A.C. Du, Q.Y. Du, X. Liu, Y.M. Yang, C.Y. **a, J. Zou, J. Li, Ce:YAG transparent ceramics enabling high luminous efficacy for high-power LEDs/LDs. J. Inorg. Mater. 36(8), 883–892 (2021)

    Article  Google Scholar 

  7. X.L. Peng, S.X. Li, A.C. Du, Z.Q. Cheng, X.M. Yao, Z.R. Huang, R.J. **e, X.J. Liu, Hot isostatic pressing post-treatment and performance of red-emitting AlN-CaAlSiN3:Eu composite phosphor ceramics. Chin. J. Lumin. 42(10), 1502–1509 (2021)

    Article  CAS  Google Scholar 

  8. X. Liu, Y. Liu, D. Yan, H. Zhu, C. Liu, C. Xu, Y. Liu, X. Wang, Single-phased white-emitting 12CaO·7Al2O3:Ce3+, Dy3+ phosphors with suitable electrical conductivity for field emission displays. J. Mater. Chem. 22(33), 102–107 (2012)

    Google Scholar 

  9. M.N. Li, F. Lei, H.H. Chen, Y. Shi, J.T. Zhao, Synthesis and red emission of NaY(WO4)2 phosphor with lithium and europium dopants. J. Inorg. Mater. 28(12), 1281–1285 (2018)

    Article  Google Scholar 

  10. F. Dkhilalli, S. Megdiche, K. Guidara, M. Rasheed, R. Barillé, M. Megdiche, AC conductivity evolution in bulk and grain boundary response of sodium tungstate Na2WO4. Ionics 24(1), 169–180 (2017)

    Article  Google Scholar 

  11. C. Zhang, X. Wang, C. Li, H. Lin, F. Zeng, Z. Su, Effect of Li ions on structure and spectroscopic properties of NaY(WO4)2:Yb/Ho phosphor. Ceram. Int. 46(15), 24248–24256 (2020)

    Article  CAS  Google Scholar 

  12. Z.X. Cheng, S.J. Zhang, F. Song, Optical spectroscopy of Yb/Er codoped NaY(WO4)2 crystal. J. Phys. Chem. Solids 63(11), 2011–2017 (2002)

    Article  CAS  Google Scholar 

  13. F. Wang, X.P. Fan, D.B. Pi, Hydrothermal synthesis and luminescence behavior of rare-earth-doped NaLa(WO4)2 powders. J. Solid State Chem. 178(3), 825–830 (2005)

    Article  CAS  Google Scholar 

  14. X.H. Qian, X.P. Pu, D.F. Zhang, Comb ustion synthesis and luminescence properties of NaY1−xEux(WO4)2 phosphors. J. Lumin. 131(8), 1692–1695 (2011)

    Article  CAS  Google Scholar 

  15. J.S. Liao, Q. Bao, H.R. Wen, Luminescence properties of monodispersed spherical BaWO4:Eu3+ microphosphors for white light-emitting diodes. J. Mater. Sci. 46(5), 1184–1189 (2011)

    Article  CAS  Google Scholar 

  16. Z.X. Huang, D. Wang, Y. Wang, Self-assembled three-dimensional NaY(WO4)2:Ln3+ architectures: hydrothermal synthesis, growth mechanism and luminescence properties. J. Alloys Compd. 529, 140–147 (2012)

    Article  CAS  Google Scholar 

  17. X.M. Li, X. **ang, W.J. Yan, Synthesis and characterization of (Y, Bi)AG:Eu3+ red phosphor by coprecipitation method. J. Inorg. Mater. 24(5), 1059–1063 (2009)

    Article  CAS  Google Scholar 

  18. Z.H. Ju, R.P. Wei, X.P. Gao, Red phosphor SrWO4:Eu3+ for potential application in white LED. Opt. Mater. 33(6), 909–913 (2011)

    Article  CAS  Google Scholar 

  19. J.X. Wu, M. Li, H.L. Jia, Z.G. Liu, M.T. Wang, Mechanism of morphology formation and energy transfer of NaLa(WO4)2:Sm3+:Eu3+ phosphors. Appl. Phys. A 125(438), 01–14 (2019)

    Google Scholar 

  20. J. Gu, Y.C. Zhu, H.B. Li, S.L. **ong, X.W. Zhang, X.Q. Wang, X.Y. Liu, Morphology controllable synthesis and luminescence properties of NaLa(WO4)2:Eu microcrystals. Solid. State. Sci. 12, 1192–1198 (2010)

    Article  CAS  Google Scholar 

  21. Y. Liu, Y.X. Liu, G.X. Liu, X.T. Dong, J.X. Wang, Up/down conversion tunable photoluminescence and energy transfer properties of NaLa(WO4)2:Er3+, Eu3+ phosphors. RSC Adv. 10, 1039–1047 (2015)

    Google Scholar 

  22. H.X. Jiang, S.C. Lu, Intense red emission and two-way energy transfer in Sm3+, Eu3+ co-doped NaLa(WO4)2 phosphors. Mater. Res. Bull. 111, 140–145 (2019)

    Article  CAS  Google Scholar 

  23. D.X. Sun, Hydrothermal synthesis of NaY(WO4)2:Tb3+ powders with assistance of surfactant and luminescence properties. J. Mater. Sci. 26(9), 6892–6896 (2015)

    CAS  Google Scholar 

  24. J. Zhang, W. Wang, B. Li, X. Zhang, X. Zhao, X. Liu, M. Zhao, Self-assembled NaY(WO4)2 hierarchical dumbbells: microwave-assisted hydrothermal synthesis and their tunable upconversion luminescent properties. Eur. J. Inorg. Chem. 2012(13), 2220–2225 (2012)

    Article  CAS  Google Scholar 

  25. A. Nexha, J.J. Carvajal, M.C. Pujol, F. Díaz, M. Aguiló, Short-wavelength infrared self-assessed photothermal agents based on Ho, Tm:KLu(WO4)2 nanocrystals operating in the third biological window (1.45–1.96 μm wavelength range). J. Mater. Chem. C 107, 10017–10024 (2019)

    Google Scholar 

  26. K.K. Rasu, D. Balaji, S.M. Babu, Spectroscopic properties of Eu3+:KLa(WO4)2 novel red phosphors. J. Lumin. 170, 547–555 (2016)

    Article  CAS  Google Scholar 

  27. Z. Shi, J. Wang, X. Guan, Upconversion multicolor tuning of NaY(WO4)2:Tb3+ with Eu3+ do**. J. Rare Earth 36(9), 911–916 (2018)

    Article  CAS  Google Scholar 

  28. T.S. Sreena, P.P. Rao, A.K.V. Raj, T.R.A.T. Hara, Narrow-band red-emitting phosphor, Gd3Zn2Nb3O14:Eu3+ with high color purity for phosphor-converted white light emitting diodes. J. Alloy. Compd. 751, 148–158 (2018)

    Article  CAS  Google Scholar 

  29. X. Tong, J. Han, X. Zhang, Spectroscopic properties of red-emitting phosphor series (Y4xEux)Zn4(SiO4)5 (x = 0.004–4) based on the site occupation of Eu3+ ion. Opt. Mater. 95, 467–471 (2019)

    Article  Google Scholar 

  30. T. Liu, Q. Meng, W. Sun, Electron-phonon coupling properties and energy transfer in NaY(WO4)2:Eu3+ phosphor. J. Alloys. Compd. 647, 830–836 (2015)

    Article  CAS  Google Scholar 

  31. X.R. Xu, M.Z. Su, Luminescence and Luminescent Materials (Chemical Industry Press, Bei**g, 2004), pp. 54–55

    Google Scholar 

  32. Y. Dwivedi, A. Rai, S.B. Rai, Energy transfer in Er:Eu:Yb co-doped tellurite glasses: Yb as enhancer and quencher. J. Lumin. 129(6), 629–633 (2009)

    Article  CAS  Google Scholar 

  33. M. Peng, G. Hong, Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu. J. Lumin. 127(2), 735–740 (2007)

    Article  CAS  Google Scholar 

  34. J.H. Chung, J.H. Ryu, J.W. Eun, J.H. Lee, S.Y. Lee, T.H. Heo, K.B. Shim, High enhancement of green upconversion luminescence of Li+, Er3+, Yb3+ tri-doped CaMoO4. Mater. Chem. Phys. 134, 695–699 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Planning Project of Zhejiang Province, China (Grant No. 2018C01046), Enterprise-funded Latitudinal Research Projects (Grant Nos. J2020-289; J2021-168; J2021-189; J2021-271; J2021-272), Sponsored by Shanghai Sailing Program (Grant No. 18YF1422500) and Research Start-up Project of Shanghai Institute of Technology (Grant No. YJ2018-9).

Funding

This work was supported by Science and Technology Planning Project of Zhejiang Province, China (Grant No. 2018C01046), Enterprise-funded Latitudinal Research Projects (Grant Nos. J2020-289; J2021-168; J2021-189; J2021-271; J2021-272), Sponsored by Shanghai Sailing Program (Grant No. 18YF1422500) and Research Start-up Project of Shanghai Institute of Technology (Grant No. YJ2018-9).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [QD], [AD], [AD], [BY], [GZ], [CG] and [JZ]. The first draft of the manuscript was written by [QD] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bobo Yang or Jun Zou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Q., Du, A., Yang, B. et al. Synthesis and characterization of red emission phosphor NaY(WO4)2:Eu3+ with La3+-doped. J Mater Sci: Mater Electron 33, 13207–13216 (2022). https://doi.org/10.1007/s10854-022-08260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08260-3

Navigation