Log in

Rational design of CNTs@FeCo2O4 as anode materials for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

FeCo2O4 was successfully grown on CNTs (CNTs@FeCo2O4) by hydrothermal reaction and calcination process. The composite structure that FeCo2O4 nanosheets evenly attach to the surface of CNTs can effectively alleviate the volume expansion and improve the conductivity of the materials. Furthermore, the CNTs@FeCo2O4 as an anode material delivers excellent electrochemical performance for lithium-ion batteries, the discharge capacity of CNTs@FeCo2O4 electrode can be attained at 1169.2 mAh g−1 after 100 cycles at 0.1 A g−1, and the capacity still maintained at 472.5 mAh g−1 after 200 cycles at 2 A g−1. This work indicates that the electrode material of CNTs@FeCo2O4 has potential application value in the research of lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. F. Wu, J. Maier, Y. Yu, Guidelines and trends for next generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020). https://doi.org/10.1039/C7CS00863E

    Article  CAS  Google Scholar 

  2. K. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006). https://doi.org/10.1126/science.1122152

    Article  CAS  Google Scholar 

  3. L. Zhang, H.B. Wu, X.W. Lou, Iron-oxide- based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 4, 1300958 (2014). https://doi.org/10.1002/aenm.201300958

    Article  CAS  Google Scholar 

  4. L. Zhang, W. Fan, W.W. Tjiu, T. Liu, 3D porous hybrids of defect-rich MoS2/graphene nanosheets with excellent electrochemical performance as anode materials for lithium-ion batteries. RSC Adv. 5, 34777–34787 (2015). https://doi.org/10.1039/C5RA04391C

    Article  CAS  Google Scholar 

  5. R. Wang, Y. Sun, K. Yang, J. Zheng, Y. Li, Z. Qian, Z. He, S. Zhong, One-time sintering process to modify xLi2MnO3(1–x)LiMO2 hollow architecture and studying their enhanced electrochemical performances. J. Energy Chem. 50, 271–279 (2020). https://doi.org/10.1016/j.jechem.2020.03.042

    Article  Google Scholar 

  6. R. Wang, X. Dai, Z. Qian, Y. Sun, S. Fan, K. **ong, H. Zhang, F. Wu, In situ surface protection for enhancing stability and performance of LiNi0.5Mn0.3Co0.2O2 at 4.8 V: the working mechanisms. ACS Mater. Lett. 2, 280–290 (2020). https://doi.org/10.1021/acsmaterialslett.9b00476

    Article  CAS  Google Scholar 

  7. T. Li, Y. Li, Y. Sun, Z. Qian, R. Wang, New insights on the good compatibility of ether-based localized high-concentration electrolyte with lithium metal. ACS Mater. Lett. 3, 838–844 (2021). https://doi.org/10.1021/acsmaterialslett.1c00276

    Article  CAS  Google Scholar 

  8. K. Yang, D. Liu, Z. Qian, D. Jiang, R. Wang, Computational auxiliary for the progress of sodium-ion solid-state electrolytes. ACS Nano 15, 17232–17246 (2021). https://doi.org/10.1021/acsnano.1c07476

    Article  CAS  Google Scholar 

  9. W. Zhou, T. Li, M. Yuan, B. Li, S. Zhong, Z. Li, X. Liu, J. Zhou, Y. Wang, H. Cai, Z.M. Dang, Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage Mater. 42, 1–11 (2021). https://doi.org/10.1016/j.ensm.2021.07.014

    Article  Google Scholar 

  10. L. Lu, H.Y. Wang, J.G. Wang, C. Wang, Q.C. Jiang, Design and synthesis of ZnO-NiO-Co3O4 hybrid nanoflakes as high-performance anode materials for Li-ion batteries. J. Mater. Chem. A. 5, 2530–2538 (2017). https://doi.org/10.1039/C6TA07708K

    Article  CAS  Google Scholar 

  11. H. Duan, L. Du, S. Zhang, Z. Chen, S. Wu, Superior lithium-storage properties derived from a high pseudoca-pacitance behavior for a peony-like holey Co3O4 anode. J. Mater. Chem. A. 7, 8327–8334 (2019). https://doi.org/10.1039/C9TA00294D

    Article  CAS  Google Scholar 

  12. J. Wang, Q. Zhang, X. Li, B. Zhang, L. Mai, K. Zhang, Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy 12, 437–446 (2015). https://doi.org/10.1016/j.nanoen.2015.01.003

    Article  CAS  Google Scholar 

  13. G. Gao, H.B. Wu, X.W. Lou, Citrate-assisted growth of NiCo2O4 nanosheets on reduced graphene oxide for highly reversible lithium storage. Adv. Energy Mater. 4, 1400422 (2014). https://doi.org/10.1002/aenm.201400422

    Article  CAS  Google Scholar 

  14. S. Li, A. Li, R. Zhang, Y. He, Y. Zhai, L. Xu, Hierarchical porous metal ferrite ballin-ball hollow spheres: general synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries. Nano Res. 7, 1116–1127 (2014). https://doi.org/10.1007/s12274-014-0474-3

    Article  CAS  Google Scholar 

  15. C.T. Cherian, J. Sundaramurthy, M.V. Reddy, P.S. Kumar, K. Mani, D. Pliszka, C.H. Sow, S. Ramakrishna, B.V.R. Chowdari, Morphologically robust NiFe2O4 nanofibers as high-capacity Li-ion battery anode material. ACS Appl. Mater. Interfaces. 5, 9957–9963 (2013). https://doi.org/10.1021/am401779p

    Article  CAS  Google Scholar 

  16. X. Yao, J. Kong, D. Zhou, C. Zhao, R. Zhou, X. Lu, Mesoporous zinc ferrite/ graphene composites: towards ultra-fast and stable anode for lithium-ion batteries. Carbon 79, 493–499 (2014). https://doi.org/10.1016/j.carbon.2014.08.007

    Article  CAS  Google Scholar 

  17. S.G. Mohamed, C.J. Chen, C.K. Chen, S.F. Hu, R.S. Liu, High-performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes. ACS Appl. Mater. Interfaces. 6, 22701–22708 (2014). https://doi.org/10.1021/am5068244

    Article  CAS  Google Scholar 

  18. X. He, R. Li, J. Liu, Q. Liu, R.R. Chen, D. Song, J. Wang, Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem. Eng. J. 334, 1573–1583 (2018). https://doi.org/10.1016/j.cej.2017.11.089

    Article  CAS  Google Scholar 

  19. Q. He, S. Gu, T. Wu, S. Zhang, X. Ao, J. Yang, Z. Wen, Self-supported mesoporous FeCo2O4 nanosheets as high-capacity anode material for sodium-ion battery. Chem. Eng. J. 330, 764–773 (2017). https://doi.org/10.1016/j.cej.2017.08.014

    Article  CAS  Google Scholar 

  20. Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Rao, Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ionics 179, 587–597 (2008). https://doi.org/10.1016/j.ssi.2008.04.007

    Article  CAS  Google Scholar 

  21. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011). https://doi.org/10.1039/C1EE01598B

    Article  CAS  Google Scholar 

  22. H.B. Wu, J.S. Chen, H.H. Hng, X.W. Lou, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4, 2526–2542 (2012). https://doi.org/10.1039/C2NR11966H

    Article  CAS  Google Scholar 

  23. M. **g, M. Zhou, G. Li, Z. Chen, W. Xu, X. Chen, Z. Hou, Graphene-embedded Co3O4 rose-spheres for enhanced performance in Lithium-ion batteries. ACS Appl. Mater. Interfaces. 9, 9662–9668 (2017). https://doi.org/10.1021/acsami.6b16396

    Article  CAS  Google Scholar 

  24. Y. Li, X. Lu, H. Wang, C. **e, G. Yang, C. Niu, Growth of ultrafine SnO2 nanoparticles within multiwall carbon nanotube networks: non-solution synthesis and excellent electrochemical properties as anodes for Lithium-ion batteries. Electrochim. Acta. 178, 778–785 (2015). https://doi.org/10.1016/j.electacta.2015.08.078

    Article  CAS  Google Scholar 

  25. Y. Jiang, H. Wang, B. Li, Y. Zhang, C. **e, J. Zhang, G. Chen, C. Niu, Interfacial engineering of Si/multi-walled carbon nanotube nanocomposites towards enhanced lithium storage performance. Carbon 107, 600–606 (2016). https://doi.org/10.1016/j.carbon.2016.06.068

    Article  CAS  Google Scholar 

  26. L. Liu, H. Zhang, Y. Mu, J. Yang, Y. Wang, Porous iron cobaltate nanoneedles array on nickel foam as anode materials for lithium-ion batteries with enhanced electrochemical performance. ACS Appl. Mater. Interf. 8, 1351–1359 (2016). https://doi.org/10.1021/acsami.5b10237

    Article  CAS  Google Scholar 

  27. J. Zhao, Z. Li, X. Yuan, Z. Yang, M. Zhang, A. Meng, Q. Li, A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays grown on sic nanowire networks as free-standing advanced electrodes. Adv. Energy Mater. 8, 1702787 (2018). https://doi.org/10.1002/aenm.201702787

    Article  CAS  Google Scholar 

  28. P. Saxena, D. Varshney, Effect of d-block element substitution on structural and dielectric properties on iron cobaltite. J. Alloys Comp. 705, 320–326 (2017). https://doi.org/10.1016/j.jallcom.2017.02.120

    Article  CAS  Google Scholar 

  29. Z. Chen, R. Wu, M. Liu, H. Wang, H. Xu, Y. Guo, Y. Song, F. Fang, X. Yu, D. Sun, General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 27, 1702046 (2017). https://doi.org/10.1002/adfm.201702046

    Article  CAS  Google Scholar 

  30. T. Peng, H. Yi, P. Sun, Y. **g, R. Wang, H. Wang, X. Wang, In situ growth of binder-free CNTs@Ni-Co-S nanosheets core/shell hybrids on Ni mesh for high energy density asymmetric supercapacitors. J. Mater. Chem. A. 4, 8888–8897 (2016). https://doi.org/10.1039/C6TA02410F

    Article  CAS  Google Scholar 

  31. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008). https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

  32. Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ionics 179, 587–597 (2008). https://doi.org/10.1016/j.ssi.2008.04.007

    Article  CAS  Google Scholar 

  33. B.J. Tan, K.J. Klabunde, P.M.A. Sherwood, XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J. Am. Chem. Soc. 113, 855–861 (1991). https://doi.org/10.1021/ja00003a019

    Article  CAS  Google Scholar 

  34. Z. Ma, L. Ren, S. **ng, Y. Wu, Y. Gao, Sodium dodecyl sulfate modified FeCo2O4 with enhanced fenton-like activity at neutral pH. J. Phys. Chem. C. 119, 23068–23074 (2015). https://doi.org/10.1021/acs.jpcc.5b07575

    Article  CAS  Google Scholar 

  35. W. Yan, Z. Yang, W. Bian, R. Yang, FeCo2O4/hollow graphene spheres hybrid with enhanced electrocatalytic activities for oxygen reduction and oxygen evolution reaction. Carbon 92, 74–83 (2015). https://doi.org/10.1016/j.carbon.2015.03.021

    Article  CAS  Google Scholar 

  36. Z. Wang, P. Hong, S. Peng, T. Zou, Y. Yang, X. **ng, Z. Wang, R. Zhao, Z. Yan, Y. Wang, Co(OH)2@FeCo2O4 as electrode material for high performance faradaic supercapacitor application. Electrochim. Acta. 299, 312–319 (2019). https://doi.org/10.1016/j.electacta.2019.01.017

    Article  CAS  Google Scholar 

  37. S.G. Mohamed, S.Y. Attia, H.H. Hassan, Spinel-structured FeCo2O4 mesoporous nanosheets as efficient electrode for supercapacitor applications. Microporous Mesoporous Mater. 251, 26–33 (2017). https://doi.org/10.1016/j.micromeso.2017.05.035

    Article  CAS  Google Scholar 

  38. S. Lalwani, M. Munjal, G. Singh, R.K. Sharma, Layered nanoblades of iron cobaltite for high performance asymmetric supercapacitors. Appl. Surf. Sci. 476, 1025–1034 (2019). https://doi.org/10.1016/j.apsusc.2019.01.184

    Article  CAS  Google Scholar 

  39. L. Ni, L. Jia, G. Chen, F. Wang, X. Liu, R. Ma, Facile synthesis of porous FeCo2O4 nanowire arrays on flexible carbon cloth with superior lithium storage properties. J. Phys. Chem. Solids. 122, 261–267 (2018). https://doi.org/10.1016/j.jpcs.2018.06.032

    Article  CAS  Google Scholar 

  40. S. Li, B. Wang, J. Liu, M. Yu, In situ one-step synthesis of CoFe2O4/graphene nanocomposites as high-performance anode for lithium-ion batteries. Electrochim. Acta. 129, 33–39 (2014). https://doi.org/10.1016/j.electacta.2014.02.039

    Article  CAS  Google Scholar 

  41. M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013). https://doi.org/10.1021/cr3001884

    Article  CAS  Google Scholar 

  42. C. Yang, S. Yu, C. Lin, F. Lv, S. Wu, Y. Yang, W. Wang, Z.Z. Zhu, J. Li, N. Wang, S. Guo, Cr0.5Nb24.5O62 nanowires with high electronic conductivity for high-rate and long-life lithium-ion storage. ACS Nano 11, 4217–4224 (2017). https://doi.org/10.1021/acsnano.7b01163

    Article  CAS  Google Scholar 

  43. R. **, H. Jiang, Y. Sun, Y. Ma, H. Li, G. Chen, Fabrication of NiFe2O4/C hollow spheres constructed by mesoporous nanospheres for high-performance lithium-ion batteries. Chem. Eng. J. 303, 501–510 (2016). https://doi.org/10.1016/j.cej.2016.06.032

    Article  CAS  Google Scholar 

  44. B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Carbon nanotubes for lithium-ion batteries. Energy Environ. Sci. 2, 638 (2009). https://doi.org/10.1039/b904116h

    Article  CAS  Google Scholar 

  45. X. Xu, L. Li, H. Chen, X. Guo, Z. Zhang, J. Liu, C. Mao, G. Li, Constructing heterostructured FeS2/CuS nanospheres as high-rate performance lithium-ion battery anodes. Inorg. Chem. Front. 7, 1900–1908 (2020). https://doi.org/10.1039/C9QI01674K

    Article  CAS  Google Scholar 

  46. M. Wu, H. Chen, L.P. Lv, Y. Wang, Graphene quantum dots modification of yolk-shell Co3O4@CuO microspheres for boosted lithium storage performance. Chem. Eng. J. 373, 985–994 (2019). https://doi.org/10.1016/j.cej.2019.05.100

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (U1810113), Shaanxi Provincial Science and Technology Department (2022GY-168,2019JLM-12), PhD early development program of XUST (2019QDJ010).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization, methodology, writing—review and editing, supervision, and project administration were performed by JC. Methodology, writing—original draft, software, and data curation were performed by YD and all authors commented on previous versions of the manuscript. Visualization, writing—review and editing, and supervision were performed JL. Formal analysis and methodology were performed by LH. Funding acquisition, project administration, and supervision were performed by SZ. Funding acquisition, project administration, supervision, and writing—review and editing were performed by YZ. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to JiangTao Cai or Yating Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Ding, Y., Li, J. et al. Rational design of CNTs@FeCo2O4 as anode materials for lithium-ion batteries. J Mater Sci: Mater Electron 33, 12832–12845 (2022). https://doi.org/10.1007/s10854-022-08228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08228-3

Navigation