Log in

Synthesis, phase confirmation and electrical properties of (1 − x)KNNS−xBNZSH lead-free ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, lead-free piezoelectric ceramics (Rx)(K0.5Na0.5)(Nb0.96Sb0.04O3)−x(Bi0.5Na0.5)(Zr0.8Sn0.1Hf0.1)O3 [abb. as (Rx)KNNS−xBNZSH, 0 ≤ x ≤ 0.04] were prepared via solid-state sintering technique. The thermal behavior of mixed powders has been investigated for x = 0, 0.02, and 0.04 using TGA-DSC analysis to estimate the calcination temperature. The structural, morphological, dielectric, ferroelectric and piezoelectric properties are analyzed through the appropriate characterization techniques. The X-ray diffraction (XRD) patterns demonstrate a pure perovskite phase structure for all the sintered samples. Further, the coexistence of rhombohedral to orthorhombic (R-O) phase is observed in ceramic sample with x = 0.02. The morphology of all the sintered samples exhibits an inhomogeneous, dense microstructure with the rectangular grain, while for x = 0.02, a relatively homogeneous distribution of grains is observed. BNZSH do** decreases the average grain size from 2.22 to 0.33 μm for x = 0 to x = 0.04, respectively. Owing to the presence of multiple-phase coexistence as well as the improved microstructure and enhanced dielectric properties (dielectric constant εr = 1080, εmax = 5301; Curie temperature - TC ~ 317 °C; dielectric loss - tanδ ~ 6%) the ceramics with x = 0.02 has been found to have a large piezoelectric coefficient (d33) of ~180 pC/N, remnant polarization (Pr) ~ 16.7 µC/cm2 and coercive field (Ec) ~ 10.7 kV/cm. We believe it will expand the range of applications for KNN-based ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability 

The data will be made available from the corresponding author on reasonable request.

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press, New York, 1971)

    Google Scholar 

  2. B. He, Y. Du, Y. Liu, J. Wang, W. Liu, H. Xu, Phase boundary design and enhanced electrical properties in (Bi0.5Li0.45Ag0.05)(Zr0.98Hf0.02)O3-modified KNN-based lead-free piezoceramic. J. Mater. Sci. Mater. Electron. 32, 18240–18250 (2021)

    CAS  Google Scholar 

  3. J. Wu, D. **ao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015)

    CAS  Google Scholar 

  4. T. Zheng, J. Wu, D. **ao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater Sci. 98, 552–624 (2018)

    CAS  Google Scholar 

  5. P.K. Panda, Review: Environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44, 5049–5062 (2009)

    CAS  Google Scholar 

  6. X. Wang, J. Wu, D. **ao, X. Cheng, T. Zheng, B. Zhang, X. Lou, J. Zhu, Large d33 in (K,Na)(Nb,Ta,Sb)O3-(Bi,Na,K)ZrO3 lead-free ceramics. J. Mater. Chem. A. 2, 4122–4126 (2014)

    CAS  Google Scholar 

  7. P. Jia, Y. Li, Z. Zheng, Z. Li, L. Cao, Y. Wang, Enhanced piezoelectric properties of (1 − x)(K0.5,Na0.5)(Nb0.97Sb0.03)O3-x(Bi0.5Ca0.5)ZrO3 ceramics through the establishment of polymorphic phase boundary. J. Alloys Compd. 890, 161799 (2021)

    Google Scholar 

  8. S. Kumari, A. Kumar, V. Kumar, S.K. Dubey, P.K. Goyal, S. Kumar, A.L. Sharma, A. Arya, Structural, dielectric and ferroelectric properties of Cu2+- and Cu2+/Bi3+-doped BCZT lead-free ceramics: a comparative study. J. Mater. Sci. Mater. Electron. 32, 16900–16915 (2021)

    CAS  Google Scholar 

  9. H. Tao, J. Wu, Giant piezoelectric effect and high strain response in (1–x)(K0.45Na0.55)(Nb1–ySby)O3-xBi0.5Na0.5Zr1–zHfzO3lead-free-ceramics. J. Eur. Ceram. Soc. 36, 1605–1612 (2016)

    CAS  Google Scholar 

  10. X. Lv, Z. Li, J. Wu, J. **, M. Gong, D. **ao, J. Zhu, Enhanced piezoelectric properties in potassium-sodium niobate-based ternary ceramics. Mater. Des. 109, 609–614 (2016)

    CAS  Google Scholar 

  11. H. Yang, C. Zhou, Q. Zhou, C. Yuan, W. Li, H. Wang, Lead-free (Li, Na, K)(Nb, Sb)O3 piezoelectric ceramics: Effect of Bi(Ni0.5Ti0.5)O3 modification and sintering temperature on microstructure and electrical properties. J. Mater. Sci. 48, 2997–3002 (2013)

    CAS  Google Scholar 

  12. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, High performance lead-free piezoelectric material. Nature. 41, 22–28 (2004)

    Google Scholar 

  13. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. **ao, J. Zhu, Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv. Mater. 5, 8519–8523 (2016)

    Google Scholar 

  14. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Adv. Mater. 30, 1–9 (2018)

    Google Scholar 

  15. T. Zheng, J. Wu, D. **ao, J. Zhu, Giant d33 in nonstoichiometric (K,Na)NbO3-based lead-free ceramics. Scr. Mater. 94, 25–27 (2015)

    CAS  Google Scholar 

  16. J. Wu, D. **ao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric ceramics: recent advances and perspectives. J. Mater. Sci. Mater. Electron. 26, 9297–9308 (2015)

    CAS  Google Scholar 

  17. P.K. Panda, B. Sahoo, PZT to lead free piezo ceramics: A review. Ferroelectrics. 474, 128–143 (2015)

    CAS  Google Scholar 

  18. M.E. Villafuerte-Castrejón, E. Morán, A. Reyes-Montero, R. Vivar-Ocampo, J.A. Peña-Jiménez, S.O. Rea-López, L. Pardo, Towards lead-free piezoceramics: facing a synthesis challenge, Materials  9, 1–27 (2016)

  19. W. Yao, J. Zhang, X. Wang, C. Zhou, X. Sun, J. Zhan, High piezoelectric performance and domain configurations of (K0.45Na0.55)0.98Li0.02Nb0.76Ta0.18Sb0.06O3 lead-free ceramics prepared by two-step sintering. J. Eur. Ceram. Soc. (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.09.017

    Article  Google Scholar 

  20. Y. Qin, J. Zhang, W. Yao, C. Lu, S. Zhang, Domain configuration and thermal stability of (K0.48Na0.52)(Nb0.96Sb0.04)O3-Bi0.50(Na0.82K0.18)0.50ZrO3 piezoceramics with high d33 coefficient. ACS Appl. Mater. Interfaces. 8, 7257–7265 (2016)

    CAS  Google Scholar 

  21. P. Li, Y. Huan, W. Yang, F. Zhu, X. Li, X. Zhang, B. Shen, J. Zhai, High-performance potassium-sodium niobate lead-free piezoelectric ceramics based on polymorphic phase boundary and crystallographic texture. Acta Mater. 165, 486–495 (2019)

    CAS  Google Scholar 

  22. J. Wu, H. Tao, Y. Yuan, X. Lv, X. Wang, X. Lou, Role of antimony in the phase structure and electrical properties of potassium-sodium niobate lead-free ceramics. RSC Adv. 5, 14575–14583 (2015)

    CAS  Google Scholar 

  23. J. Wu, J. **ao, T. Zheng, X. Wang, X. Cheng, B. Zhang, D. **ao, J. Zhu, Giant piezoelectricity of (K,Na)(Nb,Sb)O3-(Bi,Na,K,Pb)ZrO3 ceramics with rhombohedral-tetragonal (R-T) phase boundary. Scr. Mater. 88, 41–44 (2014)

    CAS  Google Scholar 

  24. H. Tao, J. Wu, H. Wang, Modification of strain and piezoelectricity in (K,Na)NbO3-(Bi,Na)HfO3 lead-free ceramics with high Curie temperature. J. Alloys Compd. 684, 217–223 (2016)

    CAS  Google Scholar 

  25. R. Singh, P.K. Patro, A.R. Kulkarni, C.S. Harendranath, Synthesis of nano-crystalline potassium sodium niobate ceramic using mechanochemical activation. Ceram. Int. 40, 10641–10647 (2014)

    CAS  Google Scholar 

  26. L. Zheng, J. Wang, Nonstoichiometric (K, Na)NbO3 ceramics: densification and electrical properties. J. Electroceram. 32, 192–198 (2014)

    CAS  Google Scholar 

  27. K. Chen, J. Ma, C. Shi, W. Wu, B. Wu, Enhanced temperature stability in high piezoelectric performance of (K,Na)NbO3-based lead-free ceramics trough co-doped antimony and tantalum. J. Alloys Compd. 852, 156865 (2021)

    CAS  Google Scholar 

  28. X. Yan, B. Peng, X. Lu, Q. Dong, W. Li, Structure evolution and enhanced piezoelectric properties of (K0.5Na0.5)NbO3-0.06LiTaO3-SrZrO3 lead-free ceramics. J. Alloys Compd. 653, 523–527 (2015)

    CAS  Google Scholar 

  29. Y.C. Dandan Xue, Y. Liu, M. Shi, P. Wang, L. Zhang, G. Liu, Z. Chen, Composition dependence of phase structure and piezoelectric properties in (0.98 – x)(K0.4Na0.6)NbO3–0.02CaZrO3–xBi0.5Na0.5HfO3 ternary ceramics. J. Mater. Sci. Mater. Electron. 29, 2072–2079 (2018)

    Google Scholar 

  30. A. Kumar, S. Kumari, V. Kumar, Thermo-gravimetric and XRD analysis of KNN-based lead-free ceramics. AIP Conf. Proc (2020). https://doi.org/10.1063/5.0017686

    Article  Google Scholar 

  31. D.X. Qian Gou, J. Zhu, J. Wu, F. Li, L. Jiang, Microstructure and electrical properties of (1 − x) K0.5Na0.5NbO3-xBi0.5Na0.5Zr0.85Sn0.15O3 lead-free ceramics. J. Alloys Compd. 730, 311–317 (2018)

    Google Scholar 

  32. X. Wang, J. Wu, X. Cheng, B. Zhang, J. Zhu, D. **ao, Compositional dependence of phase structure and electrical properties in (K0.50Na0.50)0.97Bi0.01(Nb1–xZrx)O3 lead-free ceramics. Ceram. Int. 39, 8021–8024 (2013)

    CAS  Google Scholar 

  33. Y. Yang, H. Wang, Y. Li, Q. Zheng, J. Liao, W. Jie, D. Lin, Phase coexistence induced strong piezoelectricity in K0.5Na0.5NbO3-based lead-free ceramics. Dalton Trans. 48, 10676–10682 (2019)

    CAS  Google Scholar 

  34. R. Mahbub, T. Fakhrul, M.F. Islam, Enhanced dielectric properties of tantalum oxide doped barium titanate based ceramic materials. Proc. Eng. 56, 760–765 (2013)

    CAS  Google Scholar 

  35. R. Mahbub, T. Fakhrul, M.F. Islam, M. Hasan, A. Hussain, M.A. Matin, M.A. Hakim, Structural, dielectric, and magnetic properties of ba-doped multiferroic bismuth ferrite, Acta Metall. Sin. 28, 958–964 (2015)

  36. P. Neha, M. Kumar, A. Bhatnagar, C. Singh, Prakash, Structural, dielectric, ferroelectric and ferromagnetic properties in Fe-substituted BCT ceramics for energy storage and capacitor applications. J. Mater. Sci. Mater. Electron. 32, 17620–17628 (2021)

    CAS  Google Scholar 

  37. C.A. Randall, N. Kim, J.-P. Kucera, W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998)

    CAS  Google Scholar 

  38. R. Herbiet, U. Robels, H. Dederichs, G. Arlt, Domain wall and volume contributions to material properties of PZT ceramics. Ferroelectrics. 98, 107–121 (1989)

    CAS  Google Scholar 

  39. L. Jiang, J. **ng, Z. Tan, J. Wu, Q. Chen, D. **ao, J. Zhu, High piezoelectricity in (K,Na)(Nb,Sb)O3–(Bi,La,Na,Li)ZrO3 lead-free ceramics. J. Mater. Sci. 51, 4963–4972 (2016)

    CAS  Google Scholar 

  40. K. Parida, S.K. Dehury, R.N.P. Choudhary, Structural, electrical and magneto-electric characteristics of complex multiferroic perovskite Bi0.5Pb0.5Fe0.5Ce0.5O3. J. Mater. Sci. Mater. Electron. 27, 11211–11219 (2016)

    CAS  Google Scholar 

  41. L. **, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)

    CAS  Google Scholar 

  42. P. Jaiban, N. Pisitpipathsin, S. Buntham, A. Watcharapasorn, Dielectric and ferroelectric properties of Ta-doped Ba0.7Ca0.3TiO3 ceramics, Ceram. Int. 43, S286–S291 (2017)

    CAS  Google Scholar 

  43. L. Wang, J. Wang, B. Li, X. Zhong, F. Wang, H. Song, Y. Zeng, D. Huang, Y. Zhou, Enhanced room temperature electrocaloric effect in barium titanate thin films with diffuse phase transition. RSC Adv. 4, 21826–21829 (2014)

    CAS  Google Scholar 

  44. J. Zhou, G. **ang, J. Shen, H. Zhang, Z. Xu, H. Li, P. Ma, W. Chen, Composition-insensitive enhanced piezoelectric properties in SrZrO3 modified (K, Na)NbO3-based lead-free ceramics. J. Electroceram. 44, 95–103 (2020)

    CAS  Google Scholar 

  45. R. Zuo, J. Fu, D. Lv, Y. Liu, Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J. Am. Ceram. Soc. 93, 2783–2787 (2010)

    CAS  Google Scholar 

  46. X. Cheng, Q. Gou, J. Wu, X. Wang, B. Zhang, D. **ao, J. Zhu, X. Wang, X. Lou, Dielectric, ferroelectric, and piezoelectric properties in potassium sodium niobate ceramics with rhombohedral-orthorhombic and orthorhombic-tetragonal phase boundaries. Ceram. Int. 40, 5771–5779 (2014)

    CAS  Google Scholar 

  47. H. Du, D. Liu, F. Tang, D. Zhu, W. Zhou, S. Qu, Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead-free ceramics. J. Am. Ceram. Soc. 90, 2824–2829 (2007)

    CAS  Google Scholar 

  48. H. Du, F. Luo, S. Qu, Z. Pei, D. Zhu, W. Zhou, Phase structure, microstructure, and electrical properties of bismuth modified potassium-sodium niobium lead-free ceramics. J. Appl. Phys. 102, 054102 (2007)

    Google Scholar 

  49. B. Malic, J. Bernard, A. Bencan, M. Kosec, Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics. J. Eur. Ceram. Soc. 28, 1191–1196 (2008)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors want to express their sincere gratitude to Prof. Ashish Agarwal and Prof. (Mrs.) Sujata Sanghi, Department of Physics, GJUS&T Hisar – Haryana (India) for their kind help during TGA/DSC measurements. The authors, A. Kumar and S. Kumari want to acknowledge the CSIR-New Delhi for providing fellowship as CSIR-SRF.

Author information

Authors and Affiliations

Authors

Contributions

AK: Conceptualization, Methodology, Data curation, Writing-original draft, Visualization. SK: Conceptualization, Methodology, Data curation, Formal analysis. VK: Conceptualization, Investigation, Formal analysis, Visualization, Resources, Supervision, Writing - review & editing. PK: Data curation, Resources, Formal analysis, Writing - review & editing. VNT: Conceptualization, Formal analysis, Writing - review & editing. AK: Conceptualization, Writing - review & editing, Resources. PKG: Conceptualization, Investigation, Formal analysis, Writing - review & editing. AA: Methodology, Investigation, Formal analysis, Writing - review & editing. ALS: Conceptualization, Methodology, Investigation, Resources, Writing-review & editing.

Corresponding author

Correspondence to V. Kumar.

Ethics declarations

Conflict of interest

Authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumari, S., Kumar, V. et al. Synthesis, phase confirmation and electrical properties of (1 − x)KNNS−xBNZSH lead-free ceramics. J Mater Sci: Mater Electron 33, 6240–6252 (2022). https://doi.org/10.1007/s10854-022-07798-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07798-6

Navigation