Log in

S/In molar ratio effect on the photoconductivity of the sprayed β-In2S3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In2S3 thin films have been deposited onto glass substrates at 340 °C using an inexpensive spray pyrolysis method (CSP) via the reaction between high purity indium chloride and thiourea. Structural, optical and photoconductive properties of thin films have been investigated by adjusting S/In molar ratio. The X-ray diffraction results revealed that In2S3 films are polycrystalline and exhibited a cubic structure. The optical and morphological properties are discussed. The photoconductive performances were conducted by DC electrical characterization. The best photosensitivity was obtained for the film matching S/In = 2 molar ratio. In addition, photocurrent versus light intensity and bias voltage follows a power law and linear trend, respectively. Furthermore, some critical parameters such as responsivity and detectivity were determined to evaluate photosensitive properties of In2S3 thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y.-J. Hsiao, Lu. Chung-Hsin, L.-W. Ji, T.-H. Meen, Y.-L. Chen, H.-P. Chi, Res. Lett. 9, 32 (2014)

    Google Scholar 

  2. R.B. Jacobs-Gedrim, M. Shanmugam, N. Jain, C.A. Durcan, M.T. Murphy, T.M. Murray, R.J. Matyi, R.L. Moor, B. Yu, ACS Nano 8(1), 514 (2014)

    Article  CAS  Google Scholar 

  3. K. Kadono, H. Higuchi, M. Takahashi, Y. Kawamoto, H. Tanaka, J. Non-Cryst. Solids 184(1), 309 (1995)

    Article  CAS  Google Scholar 

  4. R.A. Ismail, N.F. Habubi, M.M. Abbod, Opt. Quantum Electron. 48, 455 (2016)

    Article  Google Scholar 

  5. T.T. John, M. Mathew, C.S. Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, Sol. Energy Mater. Sol. Cells 89, 27 (2005)

    Article  CAS  Google Scholar 

  6. R. Souissi, N. Bouguila, A. Labidi, Sens. Actuators B 261, 522 (2018)

    Article  CAS  Google Scholar 

  7. R. Souissi, N. Bouguila, M. Bendahan, T. Fiorido, K. Aguir, M. Kraini, C. Vázquez-Vázquez, A. Labidi, Sens. Actuators B: Chem. 319, 128280 (2020)

    Article  CAS  Google Scholar 

  8. W.T. Kim, C.D. Kim, J. Appl. Phys. 60, 2631 (1986)

    Article  CAS  Google Scholar 

  9. A. Timoumi, H. Bouzouita, B. Rezig, Thin Solid Films 519, 7615 (2011)

    Article  CAS  Google Scholar 

  10. R. Diehl, R. Nitsche, J. Cryst. Growth 28, 306 (1975)

    Article  CAS  Google Scholar 

  11. M. Kilani, C. Guasch, M. Castagne, N.K. Turki, J. Mater. Sci. 47, 3198 (2012)

    Article  CAS  Google Scholar 

  12. A. Akkari, C. Guasch, M. Castagne, N.K. Turki, J. Mater. Sci. 46, 6285 (2011)

    Article  CAS  Google Scholar 

  13. S. Rasool, G. Phaneendra Reddy, K.T. Ramakrishna Reddy, M. Tivanov, V.F. Gremenok, Mater. Today Proceed. 4, 12491 (2017)

    Article  Google Scholar 

  14. Z. Li, X. Tao, Z. Wu, P. Zhang, Z. Zhang, Ultrason. Sonochem. 16, 221 (2009)

    Article  CAS  Google Scholar 

  15. T.T. John, S. Bini, Y. Kashiwaba, T. Abe, Y. Yasuhiro, C.S. Kattha, K.P. Vijagakumar, Semicond. Sci. Technol. 18, 491 (2003)

    Article  CAS  Google Scholar 

  16. L. Bhira, H. Essaidi, S. Belgacem, G. Couturier, J. Salardenne, N. Barreaux, J.C. Bernede, Phys. Status Solidi 181, 427 (2000)

    Article  CAS  Google Scholar 

  17. S. Ghosh, M. Saha, V.D. Ashok, A. Chatterjee, S.K. De, Nanotechnology 27, 155708 (2016)

    Article  Google Scholar 

  18. B.H. Kumar, M.C.S. Kumar, Sens. Actuators A 299, 111643 (2019)

    Article  Google Scholar 

  19. Y. Zhou, C. Gao, Y. Guo, J. Mater. Chem. A 6, 10286 (2018)

    Article  CAS  Google Scholar 

  20. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedure for Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974)

    Google Scholar 

  21. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley, Reading, 1956), p. 284

    Google Scholar 

  22. G.K. Williamson, R.E. Smallman, Philos. Mag. 1(1), 34 (1956)

    Article  CAS  Google Scholar 

  23. N. Revathi, P. Prathap, K.T. Ramakrishna Reddy, Appl. Surf. Sci. 254, 5291 (2008)

    Article  CAS  Google Scholar 

  24. M. Krunks, O. Bijakina, T. Varema, V. Mikli, E. Mellikov, Thin Solid Films 338, 125 (1999)

    Article  CAS  Google Scholar 

  25. J.I. Pankove, Optical Processes in Semiconductors (Prentice Hall Inc., Englewood Cliffs, 1971)

    Google Scholar 

  26. X. Zhang, H. Wang, J. Xu, L. Yang, M. Ren, Key Eng. Mater. 474–476, 998 (2011)

    Article  Google Scholar 

  27. N. Revathi, P. Prathap, Y.P.V. Subbaiah, K.T.R. Reddy, J. Phys. D: Appl. Phys. 41, 155404 (2008)

    Article  Google Scholar 

  28. M. Hao, Y. Liu, F. Zhou, L. Jiang, F. Liu, J. Li, ECS Solid State Lett. 3(9), Q41 (2014)

    Article  CAS  Google Scholar 

  29. M. Toumi, N. Bouguila, R. Souissi, B. Tiss, M. Kraini, S. Alaya, Opt. Int. J. Light Electron. Opt. 217, 164896 (2020)

    Article  CAS  Google Scholar 

  30. Y. Ji, Y. Ou, Z. Yu, Y. Yan, D. Wang, C. Yan, L. Liu, Y. Zhang, Y. Zhao, Surf. Coat. Technol. 276, 587 (2015)

    Article  CAS  Google Scholar 

  31. R.F. McCarthy, R.D. Schaller, D.J. Gosztola, G.P. Wiederrecht, A.B.F. Martinson, J. Phys. Chem. Lett. 6, 2554 (2015)

    Article  CAS  Google Scholar 

  32. C.H. Ho, Y.P. Wang, C.H. Chan, Y.S. Huang, C.H. Li, J. Appl. Phys. 108, 043518 (2010)

    Article  Google Scholar 

  33. M. Henry, Physique Des Semiconducteurs et Des Composants Électroniques (Masson, Paris, 1996)

    Google Scholar 

  34. B. Bouricha, R. Souissi, N. Bouguila, D. Jlidi, A. Labidi, Mater. Res. Express 6, 116456 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Tunisian Ministry of Higher Education and Scientific Research, Spanish Ministry of Science and Innovation - FEDER Funds (MODENA Project CTQ2016-79461-R) and Fundación Ramón Areces (Spain, Project CIVP18A3940). NANOMAG group belongs to Galician Competitive Research Group ED431C-2017/22, program co-funded by FEDER, and AEMAT Strategic Partnership (ED431E-2018/08, Xunta de Galicia, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bouguila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bchiri, Y., Souissi, R., Bouricha, B. et al. S/In molar ratio effect on the photoconductivity of the sprayed β-In2S3 thin films. J Mater Sci: Mater Electron 32, 27995–28006 (2021). https://doi.org/10.1007/s10854-021-07180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07180-y

Navigation