Log in

Barrier reduction and current transport mechanism in Pt/n-InP Schottky diodes using atomic layer deposited ZnO interlayer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Modification of interface properties in Pt/n-InP Schottky contacts with atomic layer deposited ZnO interlayer (IL) (5 and 10 nm) has been carried out and the electrical properties were investigated using current–voltage (IV) and capacitance–voltage (CV) techniques. The insertion of ZnO IL in the Pt/n-InP interface reduced the effective barrier height. The barrier heights from CV method were higher with respect to those from IV method. The interface state density for 5 nm thick ZnO was higher than that for 10 nm thick ZnO. The barrier heights according to thermionic field emission model showed much closer to those from CV method. Surface passivation and interfacial dipole were suggested to modulate the Schottky barrier at the Pt/ZnO/n-InP interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Kim, H. Kang, J. Kim, H. Kim, The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD. Appl. Surf. Sci. 257, 3776 (2011)

    Article  CAS  Google Scholar 

  2. Z. Baji, Z. Lábadi, Z. Horváth, G. Molnár, J. Volk, I. Bársony, P. Barna, Nucleation and growth modes of ALD ZnO. Cryst. Growth Des. 12, 5615 (2012)

    Article  CAS  Google Scholar 

  3. Y. Min, C. An, S. Kim, J. Song, C. Hwang, Growth and characterization of conducting ZnO thin films by atomic layer deposition. Bull. Korean Chem. Soc. 31, 2503 (2010)

    Article  CAS  Google Scholar 

  4. T. Tynell, M. Karppinen, Atomic layer deposition of ZnO: a review. Semicond. Sci. Technol. 29, 043001 (2014)

    Article  CAS  Google Scholar 

  5. E. Guziewicz, M. Godlewski, L. Wachnicki, T. Krajewski, G. Luka, S. Gieraltowska, R. Jakiela, A. Stonert, W. Lisowski, M. Krawczyk, J. Sobczak, A. Jablonski, ALD grown zinc oxide with controllable electrical properties. Semicond. Sci. Technol. 27, 074011 (2012)

    Article  CAS  Google Scholar 

  6. S. Lim, J. Kim, D. Kim, S. Kwon, J. Park, H. Kim, Atomic layer deposition ZnO: N thin film transistor: the effects of N concentration on the device properties. J. Electrochem. Soc. 157, H214 (2010)

    Article  CAS  Google Scholar 

  7. K. Kim, D. Lim, J. Hu, J. Kwon, M. Jeong, H. Seo, J. Lee, K. Jang, J. Lim, K. Lee, Y. Jeong, Y. Kim, S. Cho, Surface modification of a ZnO electron-collecting layer using atomic layer deposition to fabricate high-performing inverted organic photovoltaics. ACS Appl. Mater. Interfaces 5, 8718 (2013)

    Article  CAS  Google Scholar 

  8. D. Lee, H. Kim, J. Kwon, H. Choi, S. Kim, K. Kim, Structural and electrical properties of atomic layer deposited Al-doped ZnO films. Adv. Funct. Mater. 21, 448 (2011)

    Article  CAS  Google Scholar 

  9. M. Jedrzejewska-Szczerska, P. Wierzba, A. Chaaya, M. Bechelany, P. Miele, R. Viter, A. Mazikowski, K. Karpienko, M. Wróbel, ALD thin ZnO layer as an active medium in a fiber-optic Fabry-Perot interferometer. Sens. Act. A: Phys. 221, 88 (2015)

    Article  CAS  Google Scholar 

  10. E. Guziewicz, I. Kowalik, M. Godlewski, K. Kopalko, V. Osinniy, A. Wójcik, S. Yatsunenko, E. Łusakowska, W. Paszkowicz, M. Guziewicz, Extremely low temperature growth of ZnO by atomic layer deposition. J. Appl. Phys. 103, 033515 (2008)

    Article  CAS  Google Scholar 

  11. S. George, Atomic layer deposition: an overview. Chem. Rev. 110, 111 (2010)

    Article  CAS  Google Scholar 

  12. A. Mauro, M. Cantarella, G. Nicotra, V. Privitera, G. Impellizzeri, Low temperature atomic layer deposition of ZnO: applications in photocatalysis. Appl. Catal. B Environ. 196, 68 (2016)

    Article  CAS  Google Scholar 

  13. H. Frankenstein, C. Leng, M. Losego, G. Frey, Atomic layer deposition of ZnO electron transporting layers directly onto the active layer of organic solar cells. Org. Electron. 64, 37 (2019)

    Article  CAS  Google Scholar 

  14. D. Mourey, D. Zhao, J. Sun, T. Jackson, Fast PEALD ZnO thin-film transistor circuits. IEEE Trans. Electron Dev. 57, 530 (2010)

    Article  CAS  Google Scholar 

  15. S. Kim, K. Han, E. Park, S. Kim, H. Yu, Ultralow Schottky barrier height achieved by using molybdenum disulfide/dielectric stack for source/drain contact. ACS Appl. Mater. Interfaces 11, 34084 (2019)

    Article  CAS  Google Scholar 

  16. H. Kim, M. Jung, S. Choi, B. Choi, Atomic layer deposition of ZnO for modulation of electrical properties in n-GaN Schottky contacts. J. Electron. Mater. 50, 1955 (2021)

    Article  CAS  Google Scholar 

  17. J. Robertson, B. Falabretti, Band offsets of high gate oxides on III-V semiconductors. J. Appl. Phys. 100, 014111 (2006)

    Article  CAS  Google Scholar 

  18. W. Mönch, On the band-structure lineup at Schottky contacts and semiconductor heterostructures. Mater. Sci. Semicond. Process. 28, 2 (2014)

    Article  CAS  Google Scholar 

  19. A. Agrawal, J. Lin, M. Barth, R. White, B. Zheng, S. Chopra, S. Gupta, K. Wang, J. Gelatos, S. Mohney, S. Datta, Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon metal-insulator-semiconductor ohmic contacts. Appl. Phys. Lett. 104, 112101 (2014)

    Article  CAS  Google Scholar 

  20. S. Kim, G. Kim, J. Kim, J. Park, C. Shin, C. Choi, H. Yu, Fermi-level unpinning using a Ge-passivated metal–interlayer–semiconductor structure for non-alloyed ohmic contact of high-electron-mobility transistors. IEEE Electron. Dev. Lett. 36, 884 (2015)

    Article  CAS  Google Scholar 

  21. K. Chen, S. Huang, AlN passivation by plasma-enhanced atomic layer deposition for GaN-based power switches and power amplifiers. Semicond. Sci. Technol. 28, 074015 (2013)

    Article  CAS  Google Scholar 

  22. M. Akazawa, T. Hasezaki, Effect of insertion of ultrathin Al2O3 interlayer at metal/GaN interfaces. Phys. Status Solidi B 255, 1700382 (2018)

    Article  CAS  Google Scholar 

  23. Y. Byun, S. Choi, Y. An, P. McIntyre, H. Kim, Tailoring the interface quality between HfO2 and GaAs via in itu ZnO passivation using atomic layer deposition. ACS Appl. Mater. Interfaces 6, 10482 (2014)

    Article  CAS  Google Scholar 

  24. S. Kim, S. Joo, H. **, W. Kim, T. Park, Ultrathin ZnS and ZnO interfacial passivation layers for atomic-layer-deposited HfO2 films on InP substrates. ACS Appl. Mater. Interfaces 8, 20880 (2016)

    Article  CAS  Google Scholar 

  25. H. Algadi, C. Mahata, S. Kim, G. Dalapati, Improvement of photoresponse properties of self-powered ITO/InP Schottky junction photodetector by interfacial ZnO passivation. J. Electron. Mater. 50, 1800 (2021)

    Article  CAS  Google Scholar 

  26. R. Crisp, F. Hashemi, J. Alkemade, N. Kirkwood, G. Grimaldi, S. Kinge, L. Siebbeles, J. Ommen, A. Houtepen, Atomic layer deposition of ZnO on InP quantum dot films for charge separation, stabilization, and solar cell formation. Adv. Mater. Interfaces 7, 1901600 (2020)

    Article  CAS  Google Scholar 

  27. L. Zhu, J. Yang, K. Yuan, H. Chen, T. Wang, H. Ma, W. Huang, H. Lu, D. Zhang, Enhanced piezoelectric performance of the ZnO/AlN stacked nanofilm nanogenerator grown by atomic layer deposition. APL Mater. 6, 121109 (2018)

    Article  CAS  Google Scholar 

  28. Y. Lee, W. Anderson, Processing-induced conduction mechanisms in metal-insulator-semiconductor diodes on n-lnP. J. Electron. Mater. 19, 591 (1990)

    Article  CAS  Google Scholar 

  29. F. Çatır, M. Sağlam, Annealing effect on I-V and C–V characteristics of Al/n-InP Schottky diodes at low temperatures. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.03.275

    Article  Google Scholar 

  30. S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  31. G. Ersöz, I. Yücedağ, Y. Azizian-Kalandaragh, I. Orak, S. Altındal, Investigation of electrical characteristics in Al/CdS-PVA/p-Si (MPS) structures using impedance spectroscopy method. IEEE Trans. Electron. Dev. 63, 2948 (2016)

    Article  Google Scholar 

  32. A. Kumar, K. Sharma, S. Chand, A. Kumar, Investigation of barrier inhomogeneities in I-V and C–V characteristics of Ni/n-TiO2/p-Si/Al heterostructure in wide temperature range. Superlattices Microstruct. 122, 304 (2018)

    Article  CAS  Google Scholar 

  33. J. Chen, J. Lv, Q. Wang, Electronic properties of Al/MoO3/p-InP enhanced Schottky barrier contacts. Thin Solid Films 616, 145 (2016)

    Article  CAS  Google Scholar 

  34. Ş Karataş, Ş Altındal, M. Çakar, Current transport in Zn/p-Si(100) Schottky barrier diodes at high temperatures. Phys. B 357, 386 (2005)

    Article  CAS  Google Scholar 

  35. D. Bose, J. Roy, S. Basu, Improved Schottky barrier on n-InP by surface modification. Mater. Lett. 2, 455 (1984)

    Article  CAS  Google Scholar 

  36. H. Card, E. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D Appl. Phys. 4, 1589 (1971)

    Article  CAS  Google Scholar 

  37. Y. Kang, C. Kim, M. Cho, K. Chung, C. An, H. Kim, H. Lee, C. Kim, T. Lee, Thickness dependence on crystalline structure and interfacial reactions in HfO2 films on InP (001) grown by atomic layer deposition. Appl. Phys. Lett. 97, 172108 (2010)

    Article  CAS  Google Scholar 

  38. C. Chang, Y. Chiou, Y. Chang, K. Lee, T. Lin, T. Wu, M. Hong, J. Kwo, Interfacial self-cleaning in atomic layer deposition of HfO2 gate dielectric on In0.15Ga0.85As. Appl. Phys. Lett. 89, 242911 (2006)

    Article  CAS  Google Scholar 

  39. C. Hou, M. Chen, C. Chang, T. Wu, C. Chiang, Interfacial cleaning effects in passivating InSb with Al2O3 by atomic layer deposition. Electrochem. Solid-State Lett. 11, D60 (2008)

    Article  CAS  Google Scholar 

  40. S. Cheung, N. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85 (1986)

    Article  CAS  Google Scholar 

  41. F. Padovani, R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid State Electron. 9, 695 (1966)

    Article  Google Scholar 

  42. L. Chen, N. **, D. Yan, Y. Cao, L. Zhao, H. Liang, B. Liu, E. Zhang, X. Gu, R. Schrimpf, D. Fleetwood, H. Lu, Charge transport in vertical GaN Schottky barrier diodes: A refined physical model for conductive dislocations. IEEE Trans. Electron Dev. 67, 841 (2020)

    Article  CAS  Google Scholar 

  43. M. Hudait, S. Krupanidhi, Do** dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures. Phys. B 307, 125 (2001)

    Article  CAS  Google Scholar 

  44. A. Yu, Electron tunneling and contact resistance of metal-silicon contact barriers. Solid State Electron. 13, 239 (1970)

    Article  Google Scholar 

  45. E. Rhoderick, R. Williams, Metal-Semiconductor Contacts (Clarendon, Oxford, 1988)

    Google Scholar 

  46. Y. Lin, W. Lin, C. Lee, H. Chang, Electronic transport and Schottky barrier heights of Ni/Au contacts on n-type GaN surface with and without a thin native oxide layer. Jpn. J. Appl. Phys. 45, 2505 (2006)

    Article  CAS  Google Scholar 

  47. M. Reddy, A. Kumar, V. Reddy, Electrical transport characteristics of Ni/Pd/n-GaN Schottky barrier diodes as a function of temperature. Thin Solid Films 519, 3844 (2011)

    Article  CAS  Google Scholar 

  48. J. Hu, A. Nainani, Y. Sun, K.C. Saraswat, H. Wong, Impact of fixed charge on metal-insulator-semiconductor barrier height reduction. Appl. Phys. Lett. 99, 252104 (2011)

    Article  CAS  Google Scholar 

  49. K. Kita, A. Toriumi, Origin of electric dipoles formed at high-k/SiO2 interface. Appl. Phys. Lett. 94, 132902 (2009)

    Article  CAS  Google Scholar 

  50. S. Kim, S. Kim, G. Kim, C. Choi, R. Choi, H. Yu, The Effect of interfacial dipoles on the metal-double interlayers-semiconductor structure and their application in contact resistivity reduction. ACS Appl. Mater. Interfaces 8, 35614 (2016)

    Article  CAS  Google Scholar 

  51. G. Kim, T. Lee, B. Cho, H. Yu, Schottky barrier height modulation of metal–interlayer–semiconductor structure depending on contact surface orientation for multi-gate transistors. Appl. Phys. Lett. 114, 012102 (2019)

    Article  CAS  Google Scholar 

  52. J. Jang, Y. Kim, S. Chee, H. Kim, D. Whang, G. Kim, S. Yun, Clean interface contact using a ZnO interlayer for low-contact-resistance MoS2 transistors. ACS Appl. Mater. Interfaces 12, 5031 (2020)

    Article  CAS  Google Scholar 

  53. K. Yang, J. Cowles, J. East, G. Haddad, Theoretical and experimental DC characterization of InGaAs-based abrupt emitter HBT’s. IEEE Trans. Electron Dev. 42, 1047 (1995)

    Article  Google Scholar 

  54. A. Agrawal, N. Shukla, K. Ahmed, S. Datta, A unified model for insulator selection to form ultra-low resistivity metal-insulator-semiconductor contacts to n-Si, n-Ge, and n-InGaAs. Appl. Phys. Lett. 101, 042108 (2012)

    Article  CAS  Google Scholar 

  55. T. Krajewski, E. Guziewicz, M. Godlewski, L. Wachnicki, I. Kowalik, A. Wojcik-Glodowska, M. Lukasiewicz, K. Kopalko, V. Osinniy, M. Guziewicz, Microelectron. J. 40, 293 (2009)

    Article  CAS  Google Scholar 

  56. S. Jeon, S. Bang, S. Lee, S. Kwon, W. Jeong, H. Jeon, H. Chang, H. Park, Structural and electrical properties of ZnO thin films deposited by atomic layer deposition at low temperatures. J. Electrochem. Soc. 155, H738 (2008)

    Article  CAS  Google Scholar 

  57. T. Hashizume, J. Kotani, H. Hasegawa, Leakage mechanism in GaN and AlGaN Schottky interfaces. Appl. Phys. Lett. 84, 4884 (2004)

    Article  CAS  Google Scholar 

  58. R. Lingaparthi, K. Sasaki, Q. Thieu, A. Takatsuka, F. Otsuka, S. Yamakoshi, A. Kuramata, Surface related tunneling leakage in β-Ga2O3 (001) vertical Schottky barrier diodes. Appl. Phys. Exp. 12, 074008 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Advanced Research Project funded by SeoulTech (Seoul National University of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hogyoung Kim or Byung Joon Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Jung, M.J. & Choi, B.J. Barrier reduction and current transport mechanism in Pt/n-InP Schottky diodes using atomic layer deposited ZnO interlayer. J Mater Sci: Mater Electron 32, 22792–22802 (2021). https://doi.org/10.1007/s10854-021-06758-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06758-w

Navigation