Log in

The effect of thermal annealing on Ti/p-Si Schottky diodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ti/p-Si Schottky barrier diodes (SBDs) have been prepared by metal evaporating method. The effect of low annealing temperature on electrical parameters such as series resistance (Rs), ideality factor (n) and barrier height (Φb) of Ti/p-Si Schottky diodes was investigated with the help of current–voltage (I–V) and capacitance–voltage (C–V) characteristics. Schottky diodes have been annealed at temperatures from 50 to 200 °C for 1 min in N2 atmosphere. Φb, Rs and n were determined using Cheung and Norde functions in current–voltage characteristics. The Schottky barrier height of the as-deposited contact is found to be 0.747 eV (I–V), 1.038 eV (C–V), 0.622 eV [H(I)–I] and 0.786 eV [F(V)–V] and ideality factor as 1.3 (I–V) and 3.55 [dV/d(lnI)–I]. It has been seen that the barrier height, ideality factor and series resistance have changed with increasing annealing temperature up to 200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.A. Neamen, Semiconductor Physics and Devices (Irwin, Boston, 1992).

    Google Scholar 

  2. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981).

    Google Scholar 

  3. Ş Aydoğan, K. Çınar, H. Asıl, C. Coşkun, A. Türüt, J. Alloys Compd. 476, 913–918 (2009)

    Google Scholar 

  4. E. Ayyıldız, A. Türüt, Solid-State Electron. 43, 521–527 (1999)

    Google Scholar 

  5. S. Fiat, G. Çankaya, Mater. Sci. Semicond. Process. 15, 461–466 (2012)

    CAS  Google Scholar 

  6. A.A.M. Farag, A. Ashery, E.M.A. Ahmed, M.A. Salem, J. Alloys Compd. 495, 116–120 (2010)

    CAS  Google Scholar 

  7. R. Kumar, S. Chand, Solid State Sci. 58, 115–121 (2016)

    CAS  Google Scholar 

  8. X. Wang, Y. Wang, D. Li, L. Zou, Q. Zhang, J. Zhou, D. Liu, Z. Zhang, Solid State Commun. 201, 115–119 (2015)

    CAS  Google Scholar 

  9. F. Djeffal, H. Ferhati, A. Benhaya, A. Bendjerad, Superlattices Microstruct. 128, 382–391 (2019)

    CAS  Google Scholar 

  10. T. Yamaguchi, H. Kato, N. Fujimura, T. Ito, Thin Solid Films 396, 119–125 (2001)

    CAS  Google Scholar 

  11. E. Guo, Z. Zeng, Y. Zhang, X. Long, H. Zhou, X. Wang, Microelectron. Reliab. 62, 63–69 (2016)

    CAS  Google Scholar 

  12. T. Çakıcı, M. Sağlam, B. Güzeldir, Mater. Sci. Semicond. Process. 28, 121–126 (2014)

    Google Scholar 

  13. L.D. Rao, K.S. Latha, V.R. Reddy, C. Choi, Vacuum 119, 276–283 (2015)

    Google Scholar 

  14. S. Krishnan, G. Sanjeev, M. Pattabi, Nucl. Inst. Methods Phys. Res. B 266, 621–624 (2008)

    CAS  Google Scholar 

  15. M.O. Aboelfotoh, J. Appl. Phys. 64(8), 4046–4055 (1988)

    CAS  Google Scholar 

  16. Ç. Nuhoğlu, E. Özerden, A. Türüt, Appl. Surf. Sci. 250, 203–208 (2005)

    Google Scholar 

  17. S. Gholami, M. Khakbaz, World Acad. Sci. Eng. Technol. 57, 1001–1004 (2011)

    Google Scholar 

  18. A.F. Özdemir, S.M. Abdolahpour, A. Kökçe, N. Uçar, Acta Phys. Pol. A 132, 1118–1121 (2017)

    Google Scholar 

  19. A.F. Özdemir, T. Özsoy, Y. Kansız, M. Sancak, A. Kökçe, N. Uçar, D.A. Aldemir, Eur. Phys. J.-Appl. Phys. 60, 10101 (2012)

    Google Scholar 

  20. F.Z. Pür, A. Tataroğlu, Phys. Scr. 86, 035802 (2012)

    Google Scholar 

  21. U.A. Büyükbaş, A. Tataroğlu, K.Y. Azizian, Ş Altındal, J. Mater. Sci.: Mater. Electron. 29, 159–170 (2018)

    Google Scholar 

  22. E. Şenarslan, B. Güzeldir, M. Sağlam, J. Mater. Sci.: Mater. Electron. 28, 7582–7592 (2017)

    Google Scholar 

  23. Ç.Ş Güçlü, A.F. Özdemir, Ş Altındal, Appl. Phys. A 122, 1032 (2016)

    Google Scholar 

  24. B. Kınacı, S.Ş Çetin, A. Bengi, S. Özçelik, Mater. Sci. Semicond. Process. 15, 531–535 (2012)

    Google Scholar 

  25. D.A. Aldemir, Mod. Phys. Lett. B (2020). https://doi.org/10.1142/S0217984920500955

    Article  Google Scholar 

  26. H. Çetin, B. Şahin, E. Ayyıldız, A. Türüt, Phys. B 364, 133–141 (2005)

    Google Scholar 

  27. M. Siada, A. Keffousb, S. Mammaa, Y. Belkacemb, H. Menarib, Appl. Surf. Sci. 236, 366–376 (2004)

    Google Scholar 

  28. A. Kumar, A. Kumar, K.K. Sharma, S. Chand, Superlattices Microstruct. 128, 373–381 (2019)

    CAS  Google Scholar 

  29. Ş Karataş, Microelectron. Eng. 87, 1935–1940 (2010)

    Google Scholar 

  30. J. Hong, K.H. Kim, K.H. Kim, Coating 388, 1–9 (2019)

    Google Scholar 

  31. N. Yıldırım, A. Türüt, H. Doğan, Surf. Rev. Lett. 25(7), 1850082 (2018)

    Google Scholar 

  32. Z. Cao, T.D. Veal, M.J. Ashwin, K. Dawson, I. Sandall, J. Appl. Phys. 126, 053103 (2019)

    Google Scholar 

  33. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon Press, Oxford, 1988).

    Google Scholar 

  34. İ Orak, K. Ejderha, E. Sönmez, M. Alanyalıoğlu, A. Türüt, Mater. Res. Bull. 61, 463–468 (2014)

    Google Scholar 

  35. M. Shahryari, M.H. Shakib, M.B. Askari, S. Nanekarani, S.S. Nejad, S. Bagheri, World J. Eng. 14(4), 284–288 (2017)

    CAS  Google Scholar 

  36. H.R. Liauh, M.C. Chen, J.F. Chen, L.J. Chen, J. Appl. Phys. 74(4), 2590–2597 (1993)

    CAS  Google Scholar 

  37. N. Fujimura, T. Yamaguchi, H. Kato, T. Ito, Appl. Surf. Sci. 159–160, 186–190 (2000)

    Google Scholar 

  38. A. Manna, S. Saha, S.C. Saha, Chalcogenide Lett. 14(7), 283–289 (2017)

    CAS  Google Scholar 

  39. R. Padma, G. Nagaraju, V.R. Reddy, C.J. Choi, Thin Solid Films 598, 236–242 (2016)

    CAS  Google Scholar 

  40. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    CAS  Google Scholar 

  41. H. Norde, J. Appl. Phys. 50, 5052 (1979)

    CAS  Google Scholar 

  42. A. Türüt, Turk. J. Phys. 44, 302–347 (2020)

    Google Scholar 

  43. Ş Aydoğan, M. Sağlam, A. Türüt, Microelectron. Eng. 85, 278–283 (2008)

    Google Scholar 

  44. M.E. Aydın, Ö. Güllü, N. Yıldırım, Phys. B 403, 131–138 (2008)

    Google Scholar 

  45. M.B. Reddy, V. Janardhanam, A.A. Kumar, V.R. Reddy, P.N. Reddy, C.J. Choi, R. Jung, S. Hur, J. Mater. Sci: Mater. Electron. 21, 804–810 (2010)

    Google Scholar 

  46. H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589–1601 (1971)

    CAS  Google Scholar 

  47. V. Janardhanam, Y.K. Park, K.S. Ahn, C.J. Choi, J. Alloys Compd. 534, 37–41 (2012)

    CAS  Google Scholar 

  48. Ş Aydoğan, M. Sağlam, A. Türüt, Vacuum 77, 269–274 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Asıl Uğurlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asıl Uğurlu, H., Çınar Demir, K. & Coşkun, C. The effect of thermal annealing on Ti/p-Si Schottky diodes. J Mater Sci: Mater Electron 32, 15343–15351 (2021). https://doi.org/10.1007/s10854-021-06084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06084-1

Navigation