Log in

Preparation and performance of an Al/TiB2 + 10%Ti4O7/β-PbO2 as a composite anodic material for electrowinning of non-ferrous metals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrodes are the key material in the electrolysis of non-ferrous metals, and their selection and preparation can be a difficult problem in the hydrometallurgical industry. In this paper, starting from the selection of electrode materials and structural design, an Al/TiB2 + 10%Ti4O7-coating composite material was prepared by plasma spraying technology, and a β-PbO2 coating was prepared by electrochemical deposition. The phase composition of the coating was analyzed by X-ray diffractometer, and the structure of the coating was observed by scanning electron microscopy. Results show that the electrode prepared by electrodeposition at a current density of 0.03 A cm−2 has a more compact structure and more uniform grain size. Through steady-state polarization curve, cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy, the electrochemical performance of the electrode was studied. Through porosity measurements, it was found that the composite electrode material prepared by the plasma spraying method under the parameters of a spraying power of 36 kW, powder feeding rate of 30 g/min, spraying distance of 105 mm, and argon gas flow rate of 2.6 m3/h greatly reduces the charge resistance in the double-layer structure on the electrode surface, thereby accelerating the charge transfer rate. Plasma spraying and electrochemical deposition have been used to successfully prepare Al/TiB2 + 10%Ti4O7/β-PbO2 composite electrode materials with good corrosion resistance and electrochemical catalytic activity. Compared to Ti/β-PbO2 and Pb-(0.5 wt%)Ag/β-PbO2, the corrosion resistance and polarization potential increased by 83.6% and 93.0% and negatively shifted by 517.37 mV and 587.12 mV, respectively, and the catalytic activity was also significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Rama Krishna, Y. Madhavi, P. Suresh Babu et al., Strategies for corrosion protection of non-ferrous metals and alloys through surface engineering. MaterialsToday 15(Pt 1), 145–154 (2019)

    Google Scholar 

  2. M. Kaya, S. Hussaini, S. Kursunoglu, Critical review on secondary zinc resources and their recycling technologies. Hydrometallurgy 195, 105362 (2020)

    Article  CAS  Google Scholar 

  3. X. Zhu, C. Xu, J. Tang et al., Selective recovery of zinc from zinc oxide dust using choline chloride based deep eutectic solvents. Trans. Nonferrous Met. Soc. China 29(10), 2222–2228 (2019)

    Article  CAS  Google Scholar 

  4. G. Liu, Y. Wu, A. Tang et al., Recovery of scattered and precious metals from copper anode slime by hydrometallurgy: a review. Hydrometallurgy 197, 105460 (2020)

    Article  CAS  Google Scholar 

  5. B. Shen, Y. He, W. Li et al., Insight into electrochemical performance of porous FexSiy intermetallic anode for zinc electrowinning. Mater. Design 191, 108645 (2020)

    Article  CAS  Google Scholar 

  6. X. Li, H. Xu, W. Yan, Fabrication and characterization of a PbO2. J. Electrochem. Soc. (2016). https://doi.org/10.1149/2.0261610JES

    Article  Google Scholar 

  7. Y. Yang, X. Yun, W. Feng et al., Preparation and characterization of hydrophobic stearic acid-Yb-PbO2 anode and its application on the electrochemical degradation of naproxen sodium. J. Electroanal. Chem. (2020). https://doi.org/10.1016/j.jelechem.2020.114191

    Article  Google Scholar 

  8. B. Yu, R. Xu, X. Wang et al., Study of simultaneously electrodepositing α/β-PbO2 coating materials in methanesulfonic acid and its application in novel flow battery. Renew. Energy (2020). https://doi.org/10.1016/j.renene.2020.03.159

    Article  Google Scholar 

  9. J. Li, M. Li, D. Li et al., Electrochemical pretreatment of coal gasification wastewater with Bi-doped PbO2 electrode: preparation of anode, efficiency and mechanism. Chemosphere 248, 126021 (2020)

    Article  CAS  Google Scholar 

  10. H.-H. Li, T.C. Yuan, R.-D. Li et al., Electrochemical properties of powder-pressed Pb-Ag-PbO2 anodes. Trans. Nonferrous Met. Soc. China 29(11), 2422–2429 (2019)

    Article  CAS  Google Scholar 

  11. S. Chen, B. Chen, S. Wang, W. Yan, Y. He, Z. Guo, R. Xu, Ag do** to boost the electrochemical performance and corrosion resistance of Ti/Sn–Sb-RuOx/α-PbO2/β-PbO2 electrode in zinc electrowinning. J. Alloy. Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.152551

    Article  Google Scholar 

  12. C. Tang, Y. Lu, F. Wang, H. Niu, L. Yu, J. Xue, Influence of a MnO2-WC interlayer on the stability and electrocatalytic activity of titanium-based PbO2 anodes. Electrochim. Acta 331, 135381 (2019)

    Article  Google Scholar 

  13. Z. **angyang, W. Shuai, M. Chiyuan et al., Effect of Ag content and β-PbO2 plating on the properties of Al/Pb-Ag alloy. Rare Met. Mater. Eng. 47, 1999–2004 (2018)

    Article  Google Scholar 

  14. G. Hu, R. Xu, S. He et al., Electrosynthesis of Al/Pb/α-PbO2 composite inert anode materials. Trans. Nonferrous Met. Soc. China 25(6), 2095–2102 (2015)

    Article  CAS  Google Scholar 

  15. J.M. Chen, Y.J. **a, Q.Z. Dai, Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: performance, kinetics and degradation mechanism. Electrochim. Acta 165, 277–287 (2015)

    Article  CAS  Google Scholar 

  16. X.Y. Zhou, S. Wang, J. Yang et al., Effect of cooling ways on properties of Al/Pb-02%Ag rolled alloy for zinc electrowinning. Trans. Nonferr. Metal. Soc. 27, 2096–2103 (2017)

    Article  CAS  Google Scholar 

  17. B.M. Chen, Z.C. Guo, J.H. Liu, Y.C. Zhang, H.T. Yang, Study on the corrosion resistance of Pb-Ag-Co alloy electrodeposited on Al substrate. Plat. Finish. 36, 1–4 (2014)

    Google Scholar 

  18. F. **a, W.C. Jia, C.Y. Ma, J. Wang, Synthesis of Ni-TiN composites through ultrasonic pulse electrodeposition with excellent corrosion and wear resistance. Ceram. Int. 44, 766–773 (2018)

    Article  CAS  Google Scholar 

  19. M.A. Taha, M.F. Zawrah, Effect of nano ZrO2 on strengthening and electrical properties of Cu-matrix nanocomposits prepared by mechanical alloying. Ceram. Int. 43, 12698–12704 (2017)

    Article  CAS  Google Scholar 

  20. P.S.M. Silva, V. Esposito, D. Marani et al., Thermochemical stability of zirconia-titanium nitride as mixed ionicelectronic composites. Ceram. Int. 44, 8440–8446 (2018)

    Article  CAS  Google Scholar 

  21. M. Daroonparvarn, M.A.M. Yajid, N.M. Yusof et al., Microstructural characterization of air plasma sprayed nanostructure ceramic coatings on Mg-1%Ca alloys (bonded by NiCoCrAlYTa alloy). Ceram. Int. 42, 357–371 (2016)

    Article  Google Scholar 

  22. G. Qin, M. Zeng, X. Wu et al., Fabrication of Fe2O3@TiO2 core–shell nanospheres as anode materials for lithium-ion batteries. J. Mater. Sci. 29(15), 12944–12950 (2018)

    CAS  Google Scholar 

  23. R. Cano-Crespo, B.M. Moshtaghioun, D. Gómez-García et al., High temperature creep of carbon nanofiber-reinforced and graphene oxide-reinforced alumina composites sintered by spark plasma sintering. Ceram. Int. 43, 7136–7141 (2017)

    Article  CAS  Google Scholar 

  24. Z.Y. Fu, W.M. Wang, H. Wang, Proposal of structure formation in self-propagating high temperature synthesis of TiB2-xAl composites. Acta Metal. Sin. 30, B373-378 (1994)

    CAS  Google Scholar 

  25. S. Suresh, N.S.V. Moorthi, Process development in stir casting and investigation on microstructures and wear behavior of TiB2 on Al6061 MMC. Procedia Eng. 64, 1183–1190 (2013)

    Article  CAS  Google Scholar 

  26. A.S. Vivekananda, S. Balasivanandha Prabu, R. Paskaramoorthy, Combined effect of process parameters during aluminothermic reaction process on the microstructure and mechanical properties of in situ Al/TiB2 composite. J. Alloy. Compd. 735, 619–634 (2018)

    Article  CAS  Google Scholar 

  27. L. Fan, H. Lu, J. Leng et al., Performance of Al-0.6 Mg-0.05 Ga-0.1 Sn-0.1 In as anode for Al-air battery in KOH electrolyte. J. Electrochem. Soc. 162(14), A2623–A2627 (2015)

    Article  CAS  Google Scholar 

  28. Y. Xu, Z. Han, P. Zhu et al., Effects of grain refinement on microstructure and electrochemical properties of Pb-(0.5 wt%)Ag anodes for zinc electrowinning. Mater. Today Commun. 25, 101381 (2020)

    Article  CAS  Google Scholar 

  29. G. Khan, W.J. Basirun, A.B.M. Badry et al., Corrosion inhibition performance and adsorption mechanism of novel quinazoline schiff base on low alloy steel in HCl media. Int. J. Electrochem. Sci 13, 12420–12436 (2018)

    Article  CAS  Google Scholar 

  30. M. Djellab, H. Bentrah, A. Chala et al., Synergistic effect of iodide ions and bark resin of Schinus molle for the corrosion inhibition of API5L X70 pipeline steel in H2SO4. Mater. Corros. 71(8), 1276–1288 (2020)

    Article  CAS  Google Scholar 

  31. Z. Han, L. Xu, C.S. Kannan, J. Liu, S. Koppala, S. Ju, L. Zhang, Preparation and electrochemical properties of Al/TiB2/β-PbO2 layered composite electrode materials for electrowinning of nonferrous metals. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.07.059

    Article  Google Scholar 

  32. Z. Gan, N. Song, H. Zhang et al., One-step electrofabrication of reduced graphene oxide/poly(N-methylthionine) composite film for high performance supercapacitors. J. Electrochem. Soc. 167(8), 085501 (2020)

    Article  CAS  Google Scholar 

  33. Y. Liu, N. Song, Z. Ma et al., Synthesis of a poly(N-methylthionine)/reduced graphene oxide nanocomposite for the detection of hydroquinone. Mater. Chem. Phys. 223, 548–556 (2019)

    Article  CAS  Google Scholar 

  34. C. Chen, Z. Gan, Z. Kang et al., Catalytic polymerization of N-methylthionine at electrochemically reduced graphene oxide electrodes. Electrochim. Acta 283, 1649–1659 (2018)

    Article  CAS  Google Scholar 

  35. N. Elgrishi, K.J. Rountree, B.D. McCarthy et al., A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95(2), 197–206 (2018)

    Article  CAS  Google Scholar 

  36. T. Vijayabarathi, S. Muzhumathi, M. Noel, The use of hydrated nickel–cobalt mixed oxide electrodes for oxidation of aliphatic and aromatic alcohols. J. Appl. Electrochem. 37, 297–301 (2007)

    Article  CAS  Google Scholar 

  37. Z. Duan, X. Fu, Y. Mei et al., (2020) Annealing heating rate dependence of microstructure and multiferroic properties in Bi4Ti2.9Fe0.1O12/CoFe2O4 layered magnetoelectric composite films prepared by chemical solution deposition method. Ceram. Int. 46(10), 15654–15664 (2020)

    Article  CAS  Google Scholar 

  38. W. Wang, J. Zhang, D. Liang et al., Anodic oxidation growth of lanthanum/manganese-doped TiO2 nanotube arrays for photocatalytic degradation of various organic dyes. J. Mater. Sci. 31(11), 8844–8851 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of People's Republic of China (NSFC51761020 and NSFC51761021), Yunnan Ten Thousand Talents Plan Young & Elite talents Project (YNWR-QNJ-2018-044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Cao.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Tian, C., Xu, Y. et al. Preparation and performance of an Al/TiB2 + 10%Ti4O7/β-PbO2 as a composite anodic material for electrowinning of non-ferrous metals. J Mater Sci: Mater Electron 32, 13619–13629 (2021). https://doi.org/10.1007/s10854-021-05940-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05940-4

Navigation