Log in

Structure and magnetic properties of coprecipitated nickel-zinc ferrite-doped rare earth elements of Sc, Dy, and Gd

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This research is the basic study of temperature-sensitive ferrite characteristics prepared by coprecipitation with do** different sizes of rare earth elements. Ni0.5Zn0.5RExFe2-xO4 (NZRF) (x = 0.02, 0.05, 0.07, and 0.09) nanoparticles (NPs) doped by Sc, Dy, and Gd prepared by chemical coprecipitation method. XRD results show that the grain size of Ni0.5Zn0.5RExFe2-xO4 is from 10.6 to 12.4 nm, which is close to the average grain size of 13.9 nm observed on TEM images. It is also found that the ferrite particles are spherical and slightly agglomerated in TEM images. FTIR results show that the NZRF has the characteristic stretching of tetrahedral and octahedral sites in spinel ferrite near 580 cm−1 and 418 cm−1. The concentrations of nickel, zinc, iron, and rare earth elements have been determined by ICP-AES, and all ions have participated in the reaction. The magnetic properties of Sc3+, Dy3+, and Gd3+-doped NZRF NPs at room temperature are recorded by a physical property measurement system (PPMS-9). It is found that the magnetization can be changed by adding rare-earth ions. All the samples exhibit very small coercivity and almost zero remanences, which indicates the superparamagnetism of the synthesized nanoparticles at room temperature (RT). When x = 0.07, Gd3+-doped Ni0.5Zn0.5Fe2O4 (NZF) exhibits the highest saturation magnetization. Magnetic properties of NZGd0.07 vary the most with temperature. The thermomagnetic coefficient of NZGd0.07 nanoparticles stabilized to 0.18 emu/gK at 0–100 °C. Hence, NZGd0.07 with low Curie temperature and the high thermomagnetic coefficient can be used to prepare temperature-sensitive ferrofluid for hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.C.F.M. Costa, E. Tortella, M.R. Morelli, R.H.G.A. Kiminami, Synthesis, microstructure and magnetic properties of Ni–Zn ferrites—ScienceDirect. J. Magn. Magn. Mater. 256, 174–182 (2003)

    CAS  Google Scholar 

  2. A. Manohar, C. Krishnamoorthi, Structural, optical, dielectric and magnetic properties of CaFe2O4nanocrystals prepared by solvothermal reflux method. J. Alloy. Compd. 722, 818–827 (2017)

    CAS  Google Scholar 

  3. G.V.M. Williams, T. Prakash, J. Kennedy, S.V. Chong, S. Rubanov, Spin-dependent tunnelling in magnetite nanoparticles. J. Magn. Magn. Mater. 460, 229–233 (2018)

    CAS  Google Scholar 

  4. A. Manohar, C. Krishnamoorthi, Low Curie-transition temperature and superparamagnetic nature of Fe3O4 nanoparticles prepared by colloidal nanocrystal synthesis. Mater. Chem. Phys. 192, 235–243 (2017)

    CAS  Google Scholar 

  5. N. Raghuram, T.S. Rao, N.S. Kumar, K.C.B. Naidu, H. Manjunatha, B.R. Rao, A. Khan, A.M. Asiri, BaSrLaFe12O19 nanorods: optical and magnetic properties. J. Mater. Sci.: Mater. Electron. 31, 8022–8032 (2020)

    CAS  Google Scholar 

  6. A. Manohar, D.D. Geleta, C. Krishnamoorthi, J. Lee, Synthesis, characterization and magnetic hyperthermia properties of nearly monodisperse CoFe2O4 nanoparticles. Ceram. Int. 46, 28035–28041 (2020)

    CAS  Google Scholar 

  7. A. Manohar, C. Krishnamoorthi, C. Pavithra, N. Thota, Magnetic hyperthermia and photocatalytic properties of MnFe2O4 nanoparticles synthesized by solvothermal reflux method. J. Supercond. Novel Magn. 34, 251–259 (2020)

    Google Scholar 

  8. K.T. Arul, E. Manikandan, P.P. Murmu, J. Kennedy, M. Henini, Enhanced magnetic properties of polymer-magnetic nanostructures synthesized by ultrasonication. J. Alloy Compd. 720, 395–400 (2017)

    Google Scholar 

  9. A. Jordan, R. Scholz, P. Wust, H. Fahling, R. Felix, Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201, 413–419 (1999)

    CAS  Google Scholar 

  10. A. Manohar, C. Krishnamoorthi, K.C.B. Naidu, C. Pavithra, Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-2760-0

    Article  Google Scholar 

  11. A. Manohar, K. Chintagumpala, K.H. Kim, Mixed Zn–Ni spinel ferrites: Structure, magnetic hyperthermia and photocatalytic properties. Ceram. Int. 47, 7052–7061 (2021)

    CAS  Google Scholar 

  12. S.I. Ahmad, S.A. Ansari, D. Ravi Kumar, Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite. Mater. Chem. Phys. 208, 248–257 (2018)

    CAS  Google Scholar 

  13. S.M. Ognjanovic, I. Tokic, Z. Cvejic, S. Rakic, V.V. Srdic, Structural and dielectric properties of yttrium substituted nickel ferrites. Mater. Res. Bull. 49, 259–264 (2014)

    CAS  Google Scholar 

  14. A. Mallikarjuna, S. Ramesh, N.S. Kumar, K.C.B. Naidu, K.V. Ratnam, H. Manjunatha, Photocatalytic activity, negative AC-electrical conductivity, dielectric modulus, and impedance properties in 0.6 (Al0.2La0.8TiO3) + 0.4 (BiFeO3) nanocomposite. Cryst. Res. Technol. (2020). https://doi.org/10.1002/crat.202000068

    Article  Google Scholar 

  15. N.I. Abu-Elsaad, A.S. Nawara, S.A. Mazen, Synthesis, structural characterization, and magnetic properties of Ni–Zn nanoferrites substituted with different metal ions (Mn2+, Co2+, and Cu2+). J. Phys. Chem. Solids (2020). https://doi.org/10.1016/j.jpcs.2020.109620

    Article  Google Scholar 

  16. M.A. Almessiere, A.D. Korkmaz, Y. Slimani, M. Nawaz, S. Ali, A. Baykal, Magneto-optical properties of rare earth metals substituted Co-Zn spinel nanoferrites. Ceram. Int. 45, 3449–3458 (2019)

    CAS  Google Scholar 

  17. R.K. Singh, J. Shah, R.K. Kotnala, Magnetic and dielectric properties of rare earth substituted Ni0.5Zn0.5Fe1.95R0.05O4 (R = Pr, Sm and La) ferrite nanoparticles. Mater. Sci. Eng. B 210, 64–69 (2016)

    CAS  Google Scholar 

  18. S.E. Jacobo, M. Arana, P.G. Bercoff, Gadolinium substitution effect on the thermomagnetic properties of Ni ferrite ferrofluids. J. Magn. Magn. Mater. 415, 30–34 (2016)

    CAS  Google Scholar 

  19. K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, Effect of cation distribution on structural and magnetic properties of Dy substituted magnesium ferrite. J. Magn. Magn. Mater. 327, 159–166 (2013)

    CAS  Google Scholar 

  20. R.A. Pawar, S.M. Patange, A.R. Shitre, S.K. Gore, S.S. Jadhav, S.E. Shirsath, Crystal chemistry and single-phase synthesis of Gd3+substituted Co–Zn ferrite nanoparticles for enhanced magnetic properties. RSC Adv. 8, 25258–25267 (2018)

    CAS  Google Scholar 

  21. T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, Effect of Nd3+ substitution on structural and electrical properties of nanocrystalline zinc ferrite. J. Magn. Magn. Mater. 322, 2777–2781 (2010)

    CAS  Google Scholar 

  22. N. Hamdaoui, Y. Azizian-Kalandaragh, M. Khlifi, L. Beji, Structural, magnetic and dielectric properties of Ni0.6Mg0.4Fe2O4 ferromagnetic ferrite prepared by sol gel method. Ceram. Int. 45, 16458–16465 (2019)

    CAS  Google Scholar 

  23. R. RaeisiShahraki, M. Ebrahimi, S.A. SeyyedEbrahimi, S.M. Masoudpanah, Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method. J. Magn. Magn. Mater. 324, 3762–3765 (2012)

    CAS  Google Scholar 

  24. R. Kesavamoorthi, C.R. Raja, Substitution effects on rare-earth ions-doped nickel-zinc ferrite nanoparticles. J. Supercond. Novel Magn. 30, 1207–1212 (2016)

    Google Scholar 

  25. I. Soibam, S. Phanjoubam, H.B. Sharma, H.N.K. Sarma, C. Prakash, Magnetic studies of Li–Zn ferrites prepared by citrate precursor method. Phys. B 404, 3839–3841 (2009)

    CAS  Google Scholar 

  26. D. Makovec, A. Košak, A. Žnidaršič, M. Drofenik, The synthesis of spinel–ferrite nanoparticles using precipitation in microemulsions for ferrofluid applications. J. Magn. Magn. Mater. 289, 32–35 (2005)

    CAS  Google Scholar 

  27. P. Pahuja, R.K. Kotnala, R.P. Tandon, Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite. J. Alloy. Compd. 617, 140–148 (2014)

    CAS  Google Scholar 

  28. L.B. de Mello, L.C. Varanda, F.A. Sigoli, I.O. Mazali, Co-precipitation synthesis of (Zn-Mn)-co-doped magnetite nanoparticles and their application in magnetic hyperthermia. J. Alloy. Compd. 779, 698–705 (2019)

    Google Scholar 

  29. P. Thakur, S. Taneja, D. Sindhu, U. Lüders, A. Sharma, B. Ravelo, A. Thakur, Manganese zinc ferrites: a short review on synthesis and characterization. J. Supercond. Novel Magn. 33, 1569–1584 (2020)

    CAS  Google Scholar 

  30. S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (REåNd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013)

    CAS  Google Scholar 

  31. X. Wu, Z. Ding, N. Song, L. Li, W. Wang, Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles. Ceram. Int. 42, 4246–4255 (2016)

    CAS  Google Scholar 

  32. P. Scherrer, Bestimmung der Grösse und der innerenStruktur von KolloidteilchenmittelsRöntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  33. X. Zhou, Y. Zhou, L. Zhou, J. Wei, J. Wu, D. Yao, Effect of Gd and La do** on the structure, optical and magnetic properties of NiZnCo ferrites. Ceram. Int. 45, 6236–6242 (2019)

    CAS  Google Scholar 

  34. S. Ikram, F. Ashraf, M. Alzaid, K. Mahmood, N. Amin, S.A. Haider, Role of nature of rare earth ion dopants on structural, spectral, and magnetic properties in spinel ferrites. J. Supercond. Novel Magn. (2020). https://doi.org/10.1007/s10948-020-05723-8

    Article  Google Scholar 

  35. Z. Liu, Z. Peng, C. Lv, X. Fu, Do** effect of Sm 3+ on magnetic and dielectric properties of Ni-Zn ferrites. Ceram. Int. 43, 1449–1454 (2017)

    CAS  Google Scholar 

  36. C.C. Naik, A.V. Salker, Structural, magnetic and dielectric properties of Dy3+ and Sm3+ substituted Co–Cu ferrite. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab0dd0

    Article  Google Scholar 

  37. Z. Bitar, W. Abdeen, R. Awad, Effect of Er~(3+) and Pr~(3+) on the structural, magnetic and dielectric properties of Zn-Co ferrite synthesised via co-precipitation method. Mater. Res. Innov. 24, 104–112 (2020)

    CAS  Google Scholar 

  38. M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, A. Bozkurt, M.S. Toprak, Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles. J. Alloy. Compd. 486, 325–329 (2009)

    CAS  Google Scholar 

  39. F. Moravvej-Farshi, M. Amishi, K.A. Nekouee, Influence of different milling time on synthesized Ni–Zn ferrite properties by mechanical alloying method. J. Mater. Sci. Mater. Electron. 31, 13610–13619 (2020)

    CAS  Google Scholar 

  40. M. Kumari, M.C. Bhatnagar, Study of the effect of Pr do** on structural, morphological and magnetic properties of nickel ferrite. J. Supercond. Novel Magn. 32, 1027–1033 (2018)

    Google Scholar 

  41. G. Umapathy, G. Senguttuvan, L.J. Berchmans, V. Sivakumar, P. Jegatheesan, Influence of cerium substitution on structural, magnetic and dielectric properties of nanocrystalline Ni–Zn ferrites synthesized by combustion method. J. Mater. Sci. Mater. Electron. 28, 17505–17515 (2017)

    CAS  Google Scholar 

  42. V. JagadeeshaAngadi, B. Rudraswamy, K. Sadhana, S.R. Murthy, K. Praveena, Effect of Sm3+ –Gd3+ on structural, electrical and magnetic properties of Mn–Zn ferrites synthesized via combustion route. J. Alloy. Compd. 656, 5–12 (2016)

    CAS  Google Scholar 

  43. X. Zhao, A. Sun, W. Zhang, Y. Han, X. Pan, Effects of Mg substitution on the structural and magnetic properties of Ni0.2MgxCo0.8−xFe2O4 nanoparticle ferrites. J. Supercond. Novel Magn. 32, 2589–2598 (2019)

    CAS  Google Scholar 

  44. M.A. Almessiere, Y. Slimani, A. DemirKorkmaz, S. Guner, A. Baykal, S.E. Shirsath, I. Ercan, P. Kogerler, Sonochemical synthesis of Dy3+ substituted Mn0.5Zn0.5Fe2-xO4 nanoparticles: structural, magnetic and optical characterizations. Ultrason. Sonochem. 61, 104836–104836 (2019)

    Google Scholar 

  45. A. Kumar, P.S. Rana, M.S. Yadav, R.P. Pant, Effect of Gd3+ ion distribution on structural and magnetic properties in nano-sized Mn–Zn ferrite particles. Ceram. Int. 41, 1297–1302 (2015)

    CAS  Google Scholar 

  46. V. Verma, R.K. Kotnala, V. Pandey, P.C. Kothari, L. Radhapiyari, B.S. Matheru, The effect on dielectric losses in lithium ferrite by cerium substitution. J. Alloy. Compd. 466, 404–407 (2008)

    CAS  Google Scholar 

  47. S. Joshi, M. Kumar, H. Pandey, M. Singh, P. Pal, Structural, magnetic and dielectric properties of Gd3+ substituted NiFe2O4 nanoparticles. J. Alloy. Compd. 768, 287–297 (2018)

    CAS  Google Scholar 

  48. S. Aslam, M.S. Shifa, Z.A. Gilani, H.M. Noor ul Huda Khan Asghar, M.N. Usmani, J.U. Rehman, M. Azhar Khan, A. Perveen, M. Khalid, Structural, optical and magnetic elucidation of co-do** of Nd3+ and Pr3+ on lithium nanoferrite and its technological application. Results Phys. 12, 1334–1339 (2019)

    Google Scholar 

  49. J. Hu, Y. Ma, X. Kan, C. Liu, X. Zhang, R. Rao, M. Wang, G. Zheng, Investigations of Co substitution on the structural and magnetic properties of Ni-Zn spinel ferrite. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2020.167200

    Article  Google Scholar 

  50. C.C. Chauhan, A.R. Kagdi, R.B. Jotania, A. Upadhyay, C.S. Sandhu, S.E. Shirsath, S.S. Meena, Structural, magnetic and dielectric properties of Co-Zr substituted M-type calcium hexagonal ferrite nanoparticles in the presence of α-Fe2O3 phase. Ceram. Int. 44, 17812–17823 (2018)

    CAS  Google Scholar 

  51. T.A. Nhlapo, T. Moyo, The effect of particle size on structural and magnetic properties of Sm3+ ion substituted Zn-Mnnanoferrites synthesized by glycol-thermal method. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2020.167096

    Article  Google Scholar 

  52. S. Urcia-Romero, O. Perales-Pérez, G. Gutiérrez, Effect of Dy-do** on the structural and magnetic properties of Co–Zn ferrite nanocrystals for magnetocaloric applications. J. Appl. Phys. (2010). https://doi.org/10.1063/1.3338847

    Article  Google Scholar 

Download references

Acknowledgements

One part of this work was supported by the Natural Science Foundation of China [NSFC 21976039].

Author information

Authors and Affiliations

Authors

Contributions

SL: Conceptualization, Methodology, Analysis, Data curation, Writing, JP: data curation, FG, DZ, FQ and CH: Discussion of the experiment, GD: Correction of writing, YW: Conceptualization, TF: Supervision.

Corresponding author

Correspondence to Toyohisa Fujita.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Pan, J., Gao, F. et al. Structure and magnetic properties of coprecipitated nickel-zinc ferrite-doped rare earth elements of Sc, Dy, and Gd. J Mater Sci: Mater Electron 32, 13511–13526 (2021). https://doi.org/10.1007/s10854-021-05928-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05928-0

Navigation