Log in

Catalytic activity of Ag nanoparticles and Au/Ag nanocomposite prepared by pulsed laser ablation technique against 4-nitrophenol for environmental applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ag metallic nanoparticles (NPs) and Ag/Au nanocomposites were prepared by pulsed laser ablation in a liquid media method to be used as a catalytic degradation material. The tracking of the particle size, shape, and interplanar distance was detected by a high-resolution transmission electron microscope, X-ray diffraction, UV–visible spectroscopy, and Energy-dispersive X-ray spectroscopy (EDX). These techniques proved that the types of precursor medium play a vital role in the laser ablation process to produce a nanostructure from Ag or Ag/Au. Also, the prepared samples are in nanoscale and has a crystalline phase with a face-centered cubic structure. Furthermore, the Ag/Au nanocomposite structure has appeared in the form of Ag-embedded Au or Au@Ag core/shell. These results demonstrated the potential application of Ag and Ag/Au nanostructure against 4-nitrophenol for water treatment, which was strongly dependent on the consistency of its structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.A. Mwafy, M.S. Gaafar, A.M. Mostafa, S.Y. Marzouk, I.S. Mahmoud, Novel laser-assisted method for synthesis of SnO2/MWCNTs nanocomposite for water treatment from Cu (II). Diam. Relat. Mater. 113, 108287 (2021)

    CAS  Google Scholar 

  2. E.A. Mwafy, A.M. Mostafa, Tailored MWCNTs/SnO2 decorated cellulose nanofiber adsorbent for the removal of Cu (II) from waste water. Radiat. Phys. Chem. 177, 109172 (2020)

    CAS  Google Scholar 

  3. A.M. Mostafa, S.A. Yousef, W.H. Eisa, M.A. Ewaida, E.A. Al-Ashkar, WO3 quantum dot: synthesis, characterization and catalytic activity. J. Mol. Struct. 1185, 351–356 (2019)

    CAS  Google Scholar 

  4. A.M. Mostafa, E.A. Mwafy, Synthesis of ZnO/CdO thin film for catalytic degradation of 4-nitrophenol. J. Mol. Struct. 1221, 128872 (2020)

    Google Scholar 

  5. A.M. Mostafa, E.A. Mwafy, Synthesis of ZnO and Au@ ZnO core/shell nano-catalysts by pulsed laser ablation in different liquid media. J. Mater. Res. Technol. 9(3), 3241–3248 (2020)

    CAS  Google Scholar 

  6. I.N. Reddy, C.V. Reddy, M.-G. Cho, J. Shim, Morphological and chemical structure of silver-doped barium strontium titanate thin films fabricated via pulsed laser deposition. Mater. Res. Express 4(7), 076406 (2017)

    Google Scholar 

  7. S. Alghool, H.F. Abd El-Halim, A.M. Mostafa, An eco-friendly synthesis of V2O5 nanoparticles and their catalytic activity for the degradation of 4-nitrophrnol. J. Inorg. Organomet. Polym. Mater. 29(4), 1324–1330 (2019)

    CAS  Google Scholar 

  8. S. Ahmadi, M. Manteghian, H. Kazemian, S. Rohani, J.T. Darian, Synthesis of silver nano catalyst by gel-casting using response surface methodology. Powder Technol. 228, 163–170 (2012)

    CAS  Google Scholar 

  9. Z. Qiu, Y. Xue, J. Li, Y. Zhang, X. Liang, C. Wen, H. Gong, J. Zeng, Highly sensitive colorimetric detection of NH3 based on Au@Ag@AgCl core-shell nanoparticles. Chin. Chem. Lett. (2021). https://doi.org/10.1016/j.cclet.2021.02.029

    Article  Google Scholar 

  10. V. Fauzia, A. Yudiana, Y. Yulizar, M.A. Dwiputra, L. Roza, I. Soegihartono, The impact of the Au/Ag ratio on the photocatalytic activity of bimetallic alloy AuAg nanoparticle-decorated ZnO nanorods under UV irradiation. J. Phys. Chem. Solids 154, 110038 (2021)

    CAS  Google Scholar 

  11. K. Hareesh, R.P. Joshi, D.V. Sunitha, V.N. Bhoraskar, S.D. Dhole, Anchoring of Ag-Au alloy nanoparticles on reduced graphene oxide sheets for the reduction of 4-nitrophenol. Appl. Surf. Sci. 389, 1050–1055 (2016)

    Google Scholar 

  12. N. Arora, A. Mehta, A. Mishra, S. Basu, 4-Nitrophenol reduction catalysed by Au-Ag bimetallic nanoparticles supported on LDH: homogeneous vs. heterogeneous catalysis. Appl Clay Sci 151, 1–9 (2018)

    CAS  Google Scholar 

  13. J. Fu, S. Wang, J. Zhu, K. Wang, M. Gao, X. Wang, Q. Xu, Au-Ag bimetallic nanoparticles decorated multi-amino cyclophosphazene hybrid microspheres as enhanced activity catalysts for the reduction of 4-nitrophenol. Mater. Chem. Phys. 207, 315–324 (2018)

    CAS  Google Scholar 

  14. K. Hareesh, D.V. Sunitha, S.D. Dhole, V.N. Bhoraskar, D.M. Phase, J. Williams, One-step gamma radiation aided diffusion of Ag-Au alloy nanoparticles into polycarbonate and its application towards the reduction of 4-Nitrophenol. Radiat. Phys. Chem. 162, 126–130 (2019)

    CAS  Google Scholar 

  15. A.M. Mostafa, E.A. Mwafy, The effect of laser fluence for enhancing the antibacterial activity of NiO nanoparticles by pulsed laser ablation in liquid media. Environ. Nanotechnol. Monit. Manag. 14, 100382 (2020)

    Google Scholar 

  16. A.M. Darwish, W.H. Eisa, A.A. Shabaka, M.H. Talaat, Investigation of factors affecting the synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment. Spectrochim. Acta A Mol. Biomol. 153, 315–320 (2016)

    CAS  Google Scholar 

  17. A.M. Mostafa, S.A. Yousef, W.H. Eisa, M.A. Ewaida, E.A. Al-Ashkar, Au@ CdO core/shell nanoparticles synthesized by pulsed laser ablation in Au precursor solution. Appl. Phys. A 123(12), 774 (2017)

    CAS  Google Scholar 

  18. M. Dell’Aglio, V. Motto-Ros, F. Pelascini, I.B. Gornushkin, A. De Giacomo, Investigation on the material in the plasma phase by high temporally and spectrally resolved emission imaging during pulsed laser ablation in liquid (PLAL) for NPs production and consequent considerations on NPs formation. Plasma Sources Sci. Technol. 28(8), 085017 (2019)

    Google Scholar 

  19. A.M. Mostafa, E.A. Mwafy, M.S. Hasanin, One-pot synthesis of nanostructured CdS, CuS, and SnS by pulsed laser ablation in liquid environment and their antimicrobial activity. Optics Laser Technol. 121, 105824 (2020)

    CAS  Google Scholar 

  20. M.M. ElFaham, M. Okil, A.M. Mostafa, Effects of post-laser irradiation on the optical and structure properties of Al2O3 nanoparticles produced by laser ablation. J. Appl. Phys. 128(15), 153104 (2020)

    Google Scholar 

  21. M.M. ElFaham, M. Okil, A.M. Mostafa, Fabrication of magnesium metallic nanoparticles by liquid-assisted laser ablation. JOSA B. 37(9), 2620–2625 (2020)

    CAS  Google Scholar 

  22. A.M. Mostafa, Preparation and study of nonlinear response of embedding ZnO nanoparticles in PVA thin film by pulsed laser ablation. J. Mol. Struct. 1223, 129007 (2021)

    CAS  Google Scholar 

  23. E.A. Mwafy, M.S. Hasanin, A.M. Mostafa, Cadmium oxide/TEMPO-oxidized cellulose nanocomposites produced by pulsed laser ablation in liquid environment: synthesis, characterization, and antimicrobial activity. Optics Laser Technol. 120, 105744 (2019)

    CAS  Google Scholar 

  24. H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. J. Phys. Chem. B 109, 18260–18266 (2005)

    CAS  Google Scholar 

  25. M.P. Navas, R.K. Soni, Laser generated Ag and Ag–Au composite nanoparticles for refractive index sensor. Appl. Phys. A 116(3), 879–886 (2014)

    CAS  Google Scholar 

  26. M. Vinod, K.G. Gopchandran, Bimetallic Au–Ag nanochains as SERS substrates. Curr. Appl. Phys. 15(8), 857–863 (2015)

    Google Scholar 

  27. R.B. Rashid, Preparation of Au-Ag composite nanoparticles by pulsed laser ablation in water for controlling of AIP enzyme activity in human blood. J. Coll. Basic Educ. 25, 23–36 (2019)

    Google Scholar 

  28. A.H. Omran, M.H. Moheel, M.M. Abood, Antibacterial activity of mono and bimetallic Au: Ag colloidal nanoparticles prepared by pulse laser ablation PLA. J Kufa Phys 10(1), 8–19 (2018)

    Google Scholar 

  29. A. Salim, S. Ghoshal, H. Bakhtiar, G. Krishnan, H. Sa**i, Pulse laser ablated growth of Au-Ag nanocolloids: basic insight on physiochemical attributes. J. Phys. 1484, 012011 (2020)

    CAS  Google Scholar 

  30. S.C. Padmanabhan, J. McGrath, M. Bardosova, M.E. Pemble, A facile method for the synthesis of highly monodisperse silica@ gold@ silica core–shell–shell particles and their use in the fabrication of three-dimensional metallodielectric photonic crystals. J Mater Chem 22(24), 11978–11987 (2012)

    CAS  Google Scholar 

  31. N.R. Devi, M. Sasidharan, A.K. Sundramoorthy, Gold nanoparticles-thiol-functionalized reduced graphene oxide coated electrochemical sensor system for selective detection of mercury ion. J. Electrochem. Soc. 165(8), B3046 (2018)

    CAS  Google Scholar 

  32. B. Roy, A. Saha, A.K. Nandi, Melamine sensing through riboflavin stabilized gold nanoparticles. Analyst 136(1), 67–70 (2011)

    CAS  Google Scholar 

  33. M. Vinod, K. Gopchandran, Ag@ Au core–shell nanoparticles synthesized by pulsed laser ablation in water: effect of plasmon coupling and their SERS performance. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 913–919 (2015)

    CAS  Google Scholar 

  34. C. Zeng, H. Huang, F. Dong, L. Ye, T. Zhang, Y. Zhang, Y. Guo, C. Liu, Y. Hu, Dual redox couples Ag/Ag+ and I−/(IO3)−self-sacrificed transformation for realizing multiplex hierarchical architectures with universally powerful photocatalytic performance. Appl. Catal. B 200, 620–632 (2017)

    CAS  Google Scholar 

  35. A.M. Mostafa, E.A. Mwafy, Effect of dual-beam laser radiation for synthetic SnO2/Au nanoalloy for antibacterial activity. J. Mol. Struct 1222, 128913 (2020)

    CAS  Google Scholar 

  36. A.M. Mostafa, E.A. Mwafy, Laser-assisted for preparation Ag/CdO nanocomposite thin film: structural and optical study. Opt. Mater. 107, 110124 (2020)

    CAS  Google Scholar 

  37. R.W. Wyckoff, Cubic closest packed, ccp, structure. Cryst. Struct. 1, 7–83 (1963)

    Google Scholar 

  38. F. Lihl, H. Ebel, W. Baumgartner, Röntgenographische Untersuchungen zur Vegardschen Regel. Z. Metall. 62, 42–45 (1971)

    CAS  Google Scholar 

  39. M.M. ElFaham, A.M. Mostafa, E.A. Mwafy, The effect of reaction temperature on structural, optical and electrical properties of tunable ZnO nanoparticles synthesized by hydrothermal method. J. Phys. Chem. Solids, 110089 (2021)

  40. E.A. Mwafy, A.M. Mostafa, Efficient removal of Cu (II) by SnO2/MWCNTs nanocomposite by pulsed laser ablation method. Nano-Struct. Nano-Objects. 24, 100591 (2020)

    CAS  Google Scholar 

  41. W.H. Eisa, M.F. Zayed, B. Anis, L.M. Abbas, S.S. Ali, A.M. Mostafa, Clean production of powdery silver nanoparticles using Zingiber officinale: the structural and catalytic properties. J. Clean. Prod. 241, 118398 (2019)

    CAS  Google Scholar 

  42. D. Tekin, H. Kiziltas, H. Ungan, Kinetic evaluation of ZnO/TiO2 thin film photocatalyst in photocatalytic degradation of Orange G. J. Mol. Liq. 306, 112905 (2020)

    CAS  Google Scholar 

  43. K. Kannan, D. Radhika, M.P. Nikolova, K.K. Sadasivuni, H. Mahdizadeh, U. Verma, Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities. Inorg. Chem. Commun. 113, 107755 (2020)

    CAS  Google Scholar 

  44. Q. Yao, J. Sun, Y. Zhu, H. Zhang, W. Tong, TiO2 coating prepared by mechanical alloying treatment for photocatalytic degradation. Surf. Eng. 35(11), 927–932 (2019)

    CAS  Google Scholar 

  45. A.A. Aal, S.A. Mahmoud, A.K. Aboul-Gheit, Nanocrystalline ZnO thin film for photocatalytic purification of water. Mater. Sci. Eng. C 29(3), 831–835 (2009)

    Google Scholar 

  46. K. Nagaveni, G. Sivalingam, M. Hegde, G. Madras, Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environ. Sci. Technol. 38(5), 1600–1604 (2004)

    CAS  Google Scholar 

Download references

Acknowledgment

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for supporting this work through research groups program under Grant Number R.G.P.1/180/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman M. Mostafa.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafa, A.M., Mwafy, E.A., Awwad, N.S. et al. Catalytic activity of Ag nanoparticles and Au/Ag nanocomposite prepared by pulsed laser ablation technique against 4-nitrophenol for environmental applications. J Mater Sci: Mater Electron 32, 11978–11988 (2021). https://doi.org/10.1007/s10854-021-05827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05827-4

Navigation