Log in

Enhanced ferroelectric and dielectric behaviors of PZT/BFO heterostructure via compositional development

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Phase-pure perovskite structure Pb(Zr, Ti)O3 (PZT) thin films are successfully prepared on FTO/glass substrate via magnetron sputtering process, acting as buffer layers for the sol–gel-derived BiFeO3 (BFO) thin film. The existence of compressive strain of PZT buffer layer with various thicknesses was demonstrated through qualitative analysis, which can make the Gibbs-free energy flat and then reduce the ferroelectric domain reversal barrier, thereby influencing the ferroelectric performances. It showed that 100-nm PZT buffer layer is an optimal thickness, and the leakage current density of 100-nm PZT/BFO thin film is significantly decreased by 1–2 orders of magnitudes and the lowest value is obtained. And then BFO/PZT heterostructures in different modes are constructed and the related insulating, ferroelectric and dielectric performance are explored. With 100 nm PZT acting as buffer, enhanced ferroelectricity (at ± 490 kV/cm, P= 39.48 µC/cm2, Ec = 125.48 kV/cm) is obtained by modulating the number of interface between BFO and PZT to 7 (marked with Y-7), which is highly related to the reduced leakage current density (at ± 300 kV/cm, 10−5 A/cm2). It can be accounted for existence of compressive stress flattened Gibbs-free energy and increased interfaces number strengthened interfacial polarization. All these indicate that the formation of different heterostructures is promising for obtaining enhanced ferroelectricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Barman, D. Kaur, J. Alloy Compd. 644, 506–512 (2015)

    Article  CAS  Google Scholar 

  2. A. Bose, T. Maity, S. Bysakh, A. Seal, S. Sen, Appl. Surf. Sci. 256, 6205–6212 (2010)

    Article  CAS  Google Scholar 

  3. A. Bose, M. Sreemany, S. Bysakh, Appl. Surf. Sci. 282, 202–210 (2013)

    Article  CAS  Google Scholar 

  4. M. Budimir, D. Damjanovic, N. Setter, Phys. Rev. B 72, 064107 (2005)

    Article  Google Scholar 

  5. Z. Chai, G. Tan, Z. Yue, W. Yang, M. Guo, H. Ren, A. **a, M. Xue, Y. Liu, L. Lv, Y. Liu, J. Alloy Compd. 746, 677–687 (2018)

    Article  CAS  Google Scholar 

  6. B. Sun, S. Mao, S. Zhu, G. Zhou, Y. **a, Y. Zhao, ACS Appl. Nano Mater. 1, 1291–1299 (2018)

    Article  CAS  Google Scholar 

  7. C.P.F. Perdomo, A.V. Suarez, R.F.K. Gunnewiek, R.H.G.A. Kiminami, J. Alloys Compds 849, 156564 (2020)

    Article  CAS  Google Scholar 

  8. K. Omri, I. Najeh, L. El Mir, Ceram. Int. 42, 8940–8948 (2016)

    Article  CAS  Google Scholar 

  9. P. Muralt, J. Micromech. Microeng. 10, 136–146 (2000)

    Article  CAS  Google Scholar 

  10. P. Li, J. Zhai, B. Shen, W. Li, H. Zeng, K. Zhao, J. Eur. Ceram. Soc. 37, 3319–3327 (2017)

    Article  CAS  Google Scholar 

  11. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 100, 9901 (2006)

    Google Scholar 

  12. K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, Physica B 537, 167–175 (2018)

    Article  CAS  Google Scholar 

  13. K. Omri, A. Alyamani, L. El Mir, J. Mater. Sci. Mater. Electron. 30, 16606–16612 (2019)

    Article  CAS  Google Scholar 

  14. C. Lien, C.-F. Hsieh, T.-C. Wu, C.-S. Yang, M.-H. Lee, J.-J. Xu, C.-W. Hu, C. Huang, S.-Z. Chang, M.-H. Liao, IEEE Trans. Electron Devices 67, 3417–3423 (2020)

    Article  CAS  Google Scholar 

  15. V.M. Gaikwad, S.A. Acharya, J. Alloy Compd. 695, 3689–3703 (2017)

    Article  CAS  Google Scholar 

  16. P. Zheng, B. Sun, Y. Chen, H. Elshekh, T. Yu, S. Mao, S. Zhu, H. Wang, Y. Zhao, Z. Yu, Appl. Mater. Today 14, 21–28 (2019)

    Article  Google Scholar 

  17. M. Kumar, S. Shankar, P. Brijmohan, S. Kumar, O.P. Thakur, A.K. Ghosh, Phys. Lett. A 381, 379–386 (2017)

    Article  CAS  Google Scholar 

  18. P.P. Ortega, L.S.R. Rocha, C.C. Silva, M. Cilense, R.A.C. Amoresi, E. Longo, A.Z. Simões, Ceram. Int. 42, 16521–16528 (2016)

    Article  CAS  Google Scholar 

  19. G.W. Pabst, L.W. Martin, Y.-H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007)

    Article  Google Scholar 

  20. Z. Jia, X. Wu, M. Zhang, J.J. Liou, Ferroelectrics 504, 172–179 (2016)

    Article  CAS  Google Scholar 

  21. B.B. Yang, M.Y. Guo, L.H. **, X.W. Tang, R.H. Wei, L. Hu, J. Yang, W.H. Song, J.M. Dai, X.J. Lou, X.B. Zhu, Y.P. Sun, Appl. Phys. Lett. 112, 033904 (2018)

    Article  Google Scholar 

  22. L. Yu, H. Deng, W. Zhou, Q. Zhang, P. Yang, J. Chu, Mater. Lett. 170, 85–88 (2016)

    Article  CAS  Google Scholar 

  23. Y. Zhang, W. Li, W. Cao, Y. Feng, Y. Qiao, T. Zhang, W. Fei, Appl. Phys. Lett. 110, 243901 (2017)

    Article  Google Scholar 

  24. Q. Lin, R. Ding, Q. Li, Y.Y. Tay, D. Wang, Y. Liu, Y. Huang, S. Li, D. Viehland, J. Am. Ceram. Soc. 99, 2347–2353 (2016)

    Article  CAS  Google Scholar 

  25. P. Miao, Y. Zhao, N. Luo, D. Zhao, A. Chen, Z. Sun, M. Guo, M. Zhu, H. Zhang, Q. Li, Sci. Rep. 6, 19965 (2016)

    Article  CAS  Google Scholar 

  26. A.Z. Simões, M.A. Ramírez, C.S. Riccardi, A.H.M. Gonzalez, E. Longo, J.A. Varela, Mater. Chem. Phys. 98, 203–206 (2006)

    Article  Google Scholar 

  27. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Prog. Mater. Sci. 102, 72–108 (2019)

    Article  CAS  Google Scholar 

  28. H. Zhu, Y. Zhao, Y. Wang, J. Alloy Compd. 803, 942–949 (2019)

    Article  CAS  Google Scholar 

  29. H. Zhu, M. Liu, Y. Zhang, Z. Yu, J. Ouyang, W. Pan, Acta Mater. 122, 252–258 (2017)

    Article  CAS  Google Scholar 

  30. D.-Y. Lin, H.-Z. Chen, M.-C. Kao, P.-L. Zhang, Symmetry 12, 1173 (2020)

    Article  CAS  Google Scholar 

  31. C.-C. Qiu, Y.-Y. Zhang, X.-S. Lv, Y.-G. Yang, L. Wei, H.-J. Yu, Y.-Y. Hu, H.-D. Zhang, X.-P. Wang, Q.-G. Li, J. Mater. Sci. Mater. Electron. 31, 6394–6397 (2020)

    Article  CAS  Google Scholar 

  32. J. Ding, Z. Pan, P. Chen, D. Hu, F. Yang, P. Li, J. Liu, J. Zhai, Ceram. Int. 46, 14816–14821 (2020)

    Article  CAS  Google Scholar 

  33. Z. Sun, C. Ma, M. Liu, J. Cui, L. Lu, J. Lu, X. Lou, L. **, H. Wang, C.L. Jia, Adv. Mater. 29, 1604427 (2017)

    Article  Google Scholar 

  34. S.-H. Jo, S.-G. Lee, Y.-H. Lee, Nanoscale Res. Lett. 7, 54 (2012)

    Article  Google Scholar 

  35. S.R. Reddy, V.V.B. Prasad, S. Bysakh, V. Shanker, N. Hebalkar, S.K. Roy, J. Mater. Chem. C 7, 7073–7082 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1806221, 51672198), Innovation and Development Project of Zibo City (2017CX01A022), Instruction and Development Project for National Funding Innovation Demonstration Zone of Shandong Province (2016-181-11, 2017-41-1, 2017-41-3, 2018ZCQZB01, 2019ZCQZB03), Central Guiding Local Science and Technology Development Special Funds (Grant No. 2060503), and Key Research and Design Program of Shandong Province (2019GGX102011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajun Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Liu, X., Sun, H. et al. Enhanced ferroelectric and dielectric behaviors of PZT/BFO heterostructure via compositional development. J Mater Sci: Mater Electron 32, 8185–8194 (2021). https://doi.org/10.1007/s10854-020-05024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05024-9

Navigation