Log in

The optimization of contact interface between metal/MoS2 FETs by oxygen plasma treatment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The quality of the contact is key for the performance enhancement of the MoS2 device. As the oxygen plasma treatment is developed in the fabrication of MoS2 field effect transistor (FET), we demonstrate that the tunneling layer (MoO3) is formed on the top of the MoS2 contact region and the process induced organic residues in the source and drain regions is effectively removed. The formation of MoO3 can degrade the Fermi level pinning effect at the MoS2/metal interface and lowering the Schottky barrier height. And the flatness of the interface has been greatly improved, with the roughness reduced from 0.53 to 0.166 nm. In this paper, we improve the device performance with an on-/off-current ratio increase by four orders of magnitude, a mobility increase by 10 times at room temperature and the 33-fold decrease in contact resistance. This research shows that oxygen plasma treatment is a promising method for the integration of MoS2 FET in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  2. F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)

    Article  CAS  Google Scholar 

  3. R. Zhang, Z. Wu, X.J. Li et al., Aharonov-Bohm effect in monolayer phosphorene nanorings. Phys. Rev. B 95(12), 125418 (2017)

    Article  Google Scholar 

  4. M.Y. Li, S.K. Su, H.P. Wong et al., How 2D semiconductors could extend Moore’s law. Nature 567(7747), 169–170 (2019)

    Article  CAS  Google Scholar 

  5. Z.Z. Zhang, Z.H. Wu, K. Chang et al., Resonant tunneling through S- and U-shaped graphene nanoribbons. Nanotechnology 20(41), 415203 (2009)

    Article  CAS  Google Scholar 

  6. F. Schwierz, J. Pezoldt, R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7(18), 8261–8283 (2015)

    Article  CAS  Google Scholar 

  7. S. Guo, Y. Zhang, Y. Ge et al., 2D V-V binary materials: status and challenges. Adv. Mater. 31(39), e1902352 (2019)

    Article  Google Scholar 

  8. S. Najmaei, Z. Liu, P.M. Ajayan et al., Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl. Phys. Lett. 100(1), 013106 (2012)

    Article  Google Scholar 

  9. H. Liu, A.T. Neal, Y.C. Du et al., Fundamentals in MoS2 transistors: dielectric, scaling and metal contacts. ECS Trans. 58(7), 203–208 (2013)

    Article  Google Scholar 

  10. H. Liu, A.T. Neal, P.D. Ye, Channel length scaling of MoS2 MOSFETs. ACS Nano 6(10), 8563–8569 (2012)

    Article  CAS  Google Scholar 

  11. A. Rai, H. Movva, A. Roy et al., Progress in contact, do** and mobility engineering of MoS2: an atomically thin 2D semiconductor. Crystals 8(8), 316 (2018)

    Article  Google Scholar 

  12. J. Pei, J. Yang, T. Yildirim et al., Many-body complexes in 2D semiconductors. Adv. Mater. 31(2), e1706945 (2019)

    Article  Google Scholar 

  13. Z. Huang, W. Han, H. Tang et al., Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2(3), 035011 (2015)

    Article  Google Scholar 

  14. Y. Jiang, L. Miao, G. Jiang et al., Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci. Rep. 5, 16372 (2015)

    Article  CAS  Google Scholar 

  15. B. Radisavljevic, A. Radenovic, J. Brivio et al., Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)

    Article  CAS  Google Scholar 

  16. J.H. Kang, W. Liu, K. Banerjee, High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 104(9), 093106 (2014)

    Article  Google Scholar 

  17. C.D. English, G. Shine, V.E. Dorgan et al., Improving Contact Resistance in MoS2 Field Effect Transistors, in 2014 72nd Annual Device Research Conference (Drc), (2014), pp. 193–194

  18. S.X. Wu, Y. Zeng, X.B. Zeng et al., High-performance p-type MoS2 field-effect transistor by toroidal-magnetic-field controlled oxygen plasma do**. 2D Mater. (2019). https://doi.org/10.1088/2053-1583/aafe2d

    Article  Google Scholar 

  19. X. Cui, E.M. Shih, L.A. Jauregui et al., Low-temperature ohmic contact to monolayer MoS2 by van der waals bonded Co/h-BN electrodes. Nano Lett. 17(8), 4781–4786 (2017)

    Article  CAS  Google Scholar 

  20. W. Park, Y. Kim, S.K. Lee et al., Contact resistance reduction using Fermi level de-pinning layer for MoS2 FETs. 2014 IEEE International Electron Devices Meeting (Iedm), (2014)

  21. Y. Liu, J. Guo, E. Zhu et al., Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557(7707), 696–700 (2018)

    Article  CAS  Google Scholar 

  22. C. Gong, L. Colombo, R.M. Wallace et al., The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett. 14(4), 1714–1720 (2014)

    Article  CAS  Google Scholar 

  23. K.-A. Min, J. Park, R.M. Wallace et al., Reduction of Fermi level pinning at Au–MoS2 interfaces by atomic passivation on Au surface. 2D Mater. 4(1): 015019 (2016)

    Article  Google Scholar 

  24. A.T. Neal, H. Liu, J.J. Gu et al. Metal contacts to MoS2: a two-dimensional semiconductor, in Device Research Conference. (2012)

  25. M.H. Guimaraes, H. Gao, Y. Han et al., Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10(6), 6392–6399 (2016)

    Article  CAS  Google Scholar 

  26. Y. Liu, H. Nan, X. Wu et al., Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7(5), 4202–4209 (2013)

    Article  CAS  Google Scholar 

  27. N. Kang, H.P. Paudel, M.N. Leuenberger et al., Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 118(36), 21258–21263 (2014)

    Article  CAS  Google Scholar 

  28. Y. Zhang, J. Liu, Y. Pan et al., The evolution of MoS2 properties under oxygen plasma treatment and its application in MoS2 based devices. J. Mater. Sci.: Mater. Electron. 30(19), 18185–18190 (2019)

    CAS  Google Scholar 

  29. S. Chuang, C. Battaglia, A. Azcatl et al., MoS2 P-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14(3), 1337–1342 (2014)

    Article  CAS  Google Scholar 

  30. N. Kaushik, D. Karmakar, A. Nipane et al., Interfacial n-do** using an ultrathin TiO2 layer for contact resistance reduction in MoS2. ACS Appl. Mater. Interfaces 8(1), 256–263 (2016)

    Article  CAS  Google Scholar 

  31. A. Dankert, L. Langouche, M.V. Kamalakar et al., High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. ACS Nano 8(1), 476–482 (2014)

    Article  CAS  Google Scholar 

  32. C.S. K, R.C. Longo, R. Addou et al., Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology 25(37), 375703 (2014)

    Article  Google Scholar 

  33. A. Castellanos-Gomez, M. Barkelid, A.M. Goossens et al., Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12(6), 3187–3192 (2012)

    Article  CAS  Google Scholar 

  34. H. Zhu, X. Qin, L. Cheng et al., Remote plasma oxidation and atomic layer etching of MoS2. ACS Appl. Mater. Interfaces 8(29), 19119–19126 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the MOST of China (Grant No. 2016YFA0202300), the NSFC (Grant Nos. 61774168 and 11764008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangtao Liu or Zhenhua Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jia, K., Liu, J. et al. The optimization of contact interface between metal/MoS2 FETs by oxygen plasma treatment. J Mater Sci: Mater Electron 31, 9660–9665 (2020). https://doi.org/10.1007/s10854-020-03511-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03511-7

Navigation