Log in

Structural features and energy harvester device applications of textured 0.675 PMN–0.325 PT piezoceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the current study, textured lead magnesium niobate–lead titanate solid solution with composition 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 (0.675PMN–0.325PT) has been fabricated with 0.7 mol% manganese (Mn) do** to enhance the soft character and the figure of merit (FOM). Random and textured PMN–PT plates were prepared by tape casting where 1 vol% plate-like barium titanate (BaTiO3) single-crystal templates were added to induce texture. A detailed structural investigation using scanning/transmission electron microscopy (STEM) and precession electron diffraction techniques has been conducted to establish the orientational relationship between the PMN–PT matrix and the BT templates. The FOM of textured and doped PMN–PT was found to increase for almost fourfold compared to random undoped case. Characterization of the energy harvesting (EH) performance of unimorph EH devices indicated an over twofold increase in the output power of the doped and textured case in comparison to the undoped and random PMN–PT ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Yildirim, M.H. Ghayesh, W. Li, G. Alici, A review on performance enhancement techniques for ambient vibration energy harvesters. Renew. Sustain. Energy Rev. 71, 435–449 (2017)

    Article  Google Scholar 

  2. P.D. Mitcheson, T.C. Green, E.M. Yeatman, A.S. Holmes, Architectures for vibration-driven micropower generators. J. Microelectromech. Syst. 13(3), 429–440 (2004)

    Article  Google Scholar 

  3. S. Roundy, P.K. Wright, J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26(11), 1131–1144 (2003)

    Article  Google Scholar 

  4. H. Liu, C. Lee, T. Kobayashi, C.J. Tay, C. Quan, A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst. Technol. 18, 497–506 (2012)

    Article  Google Scholar 

  5. M. Safaei, H.A. Sodano, S.R. Anton, A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct. 18, 113001 (2019)

    Article  Google Scholar 

  6. S. Priya, Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19(1), 167–184 (2007)

    Article  Google Scholar 

  7. Y. Sun, Y. Chang, J. Wu, Y. Liu, L. **, S. Zhang, B. Yanga, W. Cao, Ultrahigh energy harvesting properties in textured lead-free piezoelectric composites. J. Mater. Chem. A 7, 3603–3611 (2019)

    Article  CAS  Google Scholar 

  8. S. Priya, Criterion for material selection in design of bulk piezoelectric energy harvesters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2610–2612 (2010)

    Article  Google Scholar 

  9. Y. Yan, K.H. Cho, S. Priya, Templated grain growth of 〈001〉-textured 0.675Pb(Mg1/3Nb2/3)O3–0325PbTiO3 piezoelectric ceramics for magnetic field sensors. J. Am. Ceram. Soc. 94, 1784 (2011)

    Article  CAS  Google Scholar 

  10. S.E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82(4), 1804–1811 (1997)

    Article  CAS  Google Scholar 

  11. Y. Yan, Y.U. Wang, S. Priya, Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. Appl. Phys. Lett. 100, 192905 (2012)

    Article  Google Scholar 

  12. S.F. Poterala, S. Trolier-McKinstry, R.J. Meyer, G.L. Messing, Processing, texture quality, and piezoelectric properties of 〈001〉C textured (1–x)Pb(Mg1/3Nb2/3)TiO3−xPbTiO3 ceramics. J. Appl. Phys. 110, 014105 (2011)

    Article  Google Scholar 

  13. S. Kwon, E.M. Sabolsky, G.L. Messing, S. Trolier-McKinstry, High strain, 〈001〉 textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics: templated grain growth and piezoelectric properties. J. Am. Ceram. Soc. 88(2), 312–317 (2005)

    Article  CAS  Google Scholar 

  14. E.M. Sabolsky, A.R. James, S. Kwon, S. Trolier-McKinstry, G.L. Messing, Piezoelectric properties of 〈001〉 textured Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics. Appl. Phys. Lett. 78, 2551 (2001)

    Article  CAS  Google Scholar 

  15. A. Berksoy-Yavuz, E. Mensur-Alkoy, Electrical properties and impedance spectroscopy of crystallographically textured 0.675[Pb(Mg1/3Nb2/3)O3]-0.325[PbTiO3] ceramics. J. Mater. Sci. Mater. Electron. 29, 13310–13320 (2018)

    Article  CAS  Google Scholar 

  16. A. Berksoy-Yavuz, E. Mensur-Alkoy, Enhanced soft character of crystallographically textured Mn-doped binary 0.675[Pb(Mg1/3Nb2/3)O3]–0.325[PbTiO3] ceramics. J. Electron. Mater. 47, 6557–6566 (2018)

    Article  CAS  Google Scholar 

  17. A. Berksoy-Yavuz, Fabrication, characterization and energy harvesting application of crystallographic textured (Pb(Mg1/3Nb2/3)O3)-(PbTiO3). PhD dissertation, Gebze Technical University, Kocaeli, Turkey (2018)

  18. D. Liu, Y. Yan, H. Zhou, Synthesis of micron-scale platelet BaTiO3. J. Am. Ceram. Soc. 90(4), 1323–1326 (2007)

    Article  CAS  Google Scholar 

  19. F.K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. Inorg. Nucl. Chem. 9, 113–123 (1959)

    Article  CAS  Google Scholar 

  20. K. Uchino, L.E. Cross, R.E. Newnham, S. Nomura, Electrostrictive effects in non-polar perovskites. Phase Transit. 1(4), 333–342 (1980)

    Article  CAS  Google Scholar 

  21. Y. Yan, K.H. Cho, S. Priya, Role of secondary phase in high power piezoelectric PMN-PZT ceramics. J. Am. Ceram. Soc. 94(12), 4138–4141 (2011)

    Article  CAS  Google Scholar 

  22. J.W. Yi, W.Y. Shih, W.H. Shih, Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers. J. Appl. Phys. 91(3), 1680–1686 (2002)

    Article  CAS  Google Scholar 

  23. H. Li, C. Tian, Z.D. Deng, Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 1, 041301 (2014)

    Article  Google Scholar 

  24. T. Ha, J.X.J. Zhang, N. Lu, Thickness ratio and d33 effects on flexible piezoelectric unimorph energy conversion. Smart Mater. Struct. 25, 035037 (2016)

    Article  Google Scholar 

  25. X. Gao, W.H. Shih, W.Y. Shih, Induced voltage of piezoelectric unimorph cantilevers of different nonpiezoelectric/piezoelectric length ratios. Smart Mater. Struct. 18, 125018 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support from the Turkish Academy of Sciences-GEBIP 2013 and TUBITAK Project #217M086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebru Mensur-Alkoy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berksoy-Yavuz, A., Savacı, U., Turan, S. et al. Structural features and energy harvester device applications of textured 0.675 PMN–0.325 PT piezoceramics. J Mater Sci: Mater Electron 31, 9650–9659 (2020). https://doi.org/10.1007/s10854-020-03510-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03510-8

Navigation