Log in

Photocatalytic degradation of 2,4-dichlorophenol on ZrO2–TiO2: influence of crystal size, surface area, and energetic states

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZrO2–TiO2 heterostructure with 5 mol% of ZrO2 was synthesized by the sol–gel method and calcined at different temperatures (300–600 °C). The photocatalysts were characterized by thermal analysis, X-ray diffraction, physisorption of N2, diffuse reflectance spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. The photocatalytic activity was tested for the removal of 2,4-dichlorophenol under ultraviolet irradiation, being the materials exhibiting the best performance those calcined at 400 °C and 500 °C with 99% and 98% of degradation, respectively, after 150 min under irradiation. This behavior was related to a smaller crystallite size, higher surface area, and significant hydroxyl radicals produced. The (photo)electrochemical study showed that temperatures of 400 °C and 500 °C also generated an optimum amount of energetic states that act as electron traps and decrease the electron–hole pair recombination, favoring the oxidation of 2,4-dichlorophenol. However, at 300 °C and 600 °C, these energetic states act as an energy barrier that reduces the effective charge transfer and therefore decreases the photocatalytic activity of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. B. Zhang, S. Cao, M. Du, X. Ye, Y. Wang, J. Ye, Catalysts 9, 1–27 (2019)

    Google Scholar 

  2. X. Ba, L. Yang, A. Hagfeldt, E.M.J. Johansson, P. **, Chem. Eng. J. 355, 999–1010 (2019)

    Google Scholar 

  3. J. Zhao, P. Zhang, Z. Wang, S. Zhang, H. Gao, J. Hu, G. Shao, Sci. Rep. 7, 1–11 (2017)

    Google Scholar 

  4. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, ACS Appl. Mater. Interfaces 2, 2385–2392 (2010)

    CAS  Google Scholar 

  5. L. Shi, C. Xu, X. Sun, H. Zhang, Z. Liu, X. Qu, F. Du, J. Mater. Sci. 53, 11329–11342 (2018)

    CAS  Google Scholar 

  6. H. Cai, L. Cheng, F. Xu, H. Wang, W. Xu, F. Li, R. Soc. Open Sci. 5, 1–11 (2018)

    Google Scholar 

  7. N. Talinungsang, D.D. Paul, M.G. Purkayastha, Superlattices Microstruct. 129, 105–114 (2019)

    CAS  Google Scholar 

  8. L. Baia, E. Orbán, S. Fodor, B. Hampel, E.Z. Kedves, K. Saszet, I. Székely, É. Karácsonyi, B. Réti, P. Berki, A. Vulpoi, K. Magyari, A. Csavdári, C. Bolla, V. Coșoveanu, K. Hernádi, M. Baia, A. Dombi, V. Danciu, G. Kovács, Z. Pap, Mater. Sci. Semicond. Proc. 42, 66–71 (2016)

    CAS  Google Scholar 

  9. M.A. Ahmed, E.E. El-Katori, Z.H. Gharni, J. Alloys Compd. 553, 19–29 (2013)

    CAS  Google Scholar 

  10. C. Moslah, T. Aguilar, R. Alcántara, M. Ksibi, J. Navas, J. Chin. Chem. Soc. 66, 99–109 (2019)

    CAS  Google Scholar 

  11. K.Y. Jung, S.B. Park, S.K. Ihm, Appl. Catal. B 51, 239–245 (2004)

    CAS  Google Scholar 

  12. D. Ramírez-Ortega, A.M. Meléndez, P. Acevedo-Peña, I. González, R. Arroyo, Electrochim. Acta 140, 541–549 (2014)

    Google Scholar 

  13. D. Ramírez-Ortega, P. Acevedo-Peña, F. Tzompantzi, R. Arroyo, I. González, J. Mater. Sci. 52, 260–275 (2017)

    Google Scholar 

  14. B. Mazinani, A.K. Masrom, A. Beitollahi, R. Luque, Ceram. Int. 40, 11525–11532 (2014)

    CAS  Google Scholar 

  15. M. Rosales, T. Zoltan, C. Yadarola, E. Mosquera, F. Gracia, A. García, J. Mol. Liq. 281, 59–69 (2019)

    CAS  Google Scholar 

  16. S. Wang, P. Kuang, B. Cheng, J. Yu, C. Jiang, J. Alloys Compd. 741, 622–632 (2018)

    CAS  Google Scholar 

  17. L. Huang, F. Peng, H. Wang, H. Yu, Z. Li, Catal. Commun. 10, 1839–1843 (2009)

    CAS  Google Scholar 

  18. M. Shang, W. Wang, L. Zhang, S. Sun, L. Wang, L. Zhou, J. Phys. Chem. C 113, 14727–14731 (2009)

    CAS  Google Scholar 

  19. M. Strauss, M. Pastorello, F.A. Sigoli, J.M. de Souza e Silva, I.O. Mazali, Appl. Surf. Sci. 319, 151–157 (2014)

    CAS  Google Scholar 

  20. P. Xu, T.J. Milstein, T.E. Mallouk, A.C.S. Appl, Mater. Interfaces 8, 11539–11547 (2016)

    CAS  Google Scholar 

  21. D. Guerrero-Araque, D. Ramírez-Ortega, P. Acevedo-Peña, F. Tzompantzi, H.A. Calderón, R. Gómez, J. Photochem. Photobiol. A 335, 276–286 (2017)

    CAS  Google Scholar 

  22. K. Siwinska-Stefanska, A. Kubiak, A. Piasecki, J. Goscianska, G. Nowaczyk, S. Jurga, T. Jesionowski, Materials 11, 1–19 (2018)

    Google Scholar 

  23. C.Y. Wu, K.J. Tu, J.P. Deng, Y.S. Lo, C.H. Wu, Materials 10, 566 (2017)

    Google Scholar 

  24. X. Liang, P. Wang, M. Li, Q. Zhang, Z. Wang, Y. Dai, X. Zhang, Y. Liu, M.H. Whangbo, B. Huang, Appl. Catal. B 220, 356–361 (2018)

    CAS  Google Scholar 

  25. M. Dahl, Y. Liu, Y. Yin, Chem. Rev. 114, 9853–9889 (2014)

    CAS  Google Scholar 

  26. X. Chen, X. Wang, X. Fu, Energy Environ. Sci. 2, 872–877 (2009)

    CAS  Google Scholar 

  27. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855–874 (2011)

    CAS  Google Scholar 

  28. Y.F. Chen, C.Y. Lee, M.Y. Yeng, C.H. Chiu, J. Cryst. Growth 247, 363–370 (2003)

    CAS  Google Scholar 

  29. J.G. Yu, H.G. Yu, B. Cheng, X.J. Zhao, J.C. Yu, W.K. Ho, J. Phys. Chem. B 107, 13871–13879 (2003)

    CAS  Google Scholar 

  30. X. You, F. Chen, J. Zhang, J. Sol Gel Sci. Technol. 34, 181–187 (2005)

    CAS  Google Scholar 

  31. Z.N. Kayani, F. Saleemi, I. Batool, Appl. Phys. A 119, 713–720 (2015)

    CAS  Google Scholar 

  32. S. Kumar, S. Bhunia, A.K. Ojha, Physica E 66, 74–80 (2015)

    CAS  Google Scholar 

  33. L. Kokporka, S. Onsuratoom, T. Puangpetch, S. Chavadej, Mater. Sci. Semicond. Proc. 16, 667–678 (2013)

    CAS  Google Scholar 

  34. B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, M.S. El-Aasse, Langmuir 17, 2664–2669 (2001)

    CAS  Google Scholar 

  35. B.M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.V. Volta, J. Phys. Chem. B 107, 5162–5167 (2003)

    CAS  Google Scholar 

  36. A. Sinhamahapatra, J.P. Jeon, J. Kang, B. Han, J.S. Yu, Sci. Rep. 6, 27218 (2016)

    CAS  Google Scholar 

  37. A. Juma, I.O. Acik, A.T. Oluwabi, A. Mere, V. Mikli, M. Danilson, M. Krunks, Appl. Surf. Sci. 387, 539–545 (2016)

    CAS  Google Scholar 

  38. J. Yan, G. Wu, N. Guan, L. Li, Z. Li, X. Cao, Phys. Chem. Chem. Phys. 15, 10978–10988 (2013)

    CAS  Google Scholar 

  39. L. He, Z. Tong, Z. Wang, M. Chen, N. Huang, W. Zhang, J. Colloid Interface Sci. 509, 448–456 (2018)

    CAS  Google Scholar 

  40. J. Xu, Y. Teng, F. Teng, Sci. Rep. 6, 32457 (2016)

    CAS  Google Scholar 

  41. S. Gligorovski, R. Strekowski, S. Barbati, D. Vione, Chem. Rev. 115, 13051–13092 (2015)

    CAS  Google Scholar 

  42. D. Zhang, R. Qiua, L. Song, B. Eric, Y. Mo, X. Huang, J. Hazard. Mater. 163, 843–847 (2009)

    CAS  Google Scholar 

  43. A. Kambur, G.S. Pozan, I, Boz. Appl. Catal. B 115–116, 149–158 (2012)

    Google Scholar 

  44. M. Ismael, M. Wark, Catalysts 9, 342 (2019)

    Google Scholar 

  45. M.F.M. Noh, M.F. Soh, C.H. Teh, E.L. Lim, C.C. Yap, M.A. Ibrahim, N.A. Ludin, M.A.M. Teridi, Sol. Energy 158, 474–482 (2017)

    CAS  Google Scholar 

  46. J.Q. Lu, T.E. Kopley, N. Moll, D. Roitman, D. Chamberlin, Q. Fu, J. Liu, T.P. Russell, D.A. Rider, I. Manners, M.A. Winnik, Chem. Mater. 17, 2227–2231 (2005)

    CAS  Google Scholar 

  47. S. Li, Q. Wang, T. Chen, Z. Zhou, Y. Wang, J. Fu, Nanoscale Res. Lett. 7, 227 (2007)

    Google Scholar 

  48. S.H. Othman, S.A. Rashid, T.I. Mohd Ghazi, N. Abdullah, J. Nanomater. 512785, 1–10 (2010)

    Google Scholar 

  49. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Mater. Chem. Phys. 116, 376–382 (2009)

    CAS  Google Scholar 

  50. X. Yu, B. Kim, Y.K. Kim, ACS Catal. 3, 2479–2486 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Laboratorio Universitario de Caracterización Espectroscópica (LUCE-UNAM) and Laboratorio Universitario de Nanotecnología Ambiental (LUNA-UNAM) as well as V. Maturano and S. Islas for technical support. We also thank CONACyT for financial support granted through the project CB-2015-01 256410 Synthesis of hybrid Materials. Materials for Alternative energies. SEP-Profides 2018, UANL-UAM.CB-2015-01 256410. D.A. Ramírez Ortega (CVU 329398) thanks CONACyT for post-doctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Guerrero-Araque.

Ethics declarations

Conflict of interest

The authors declare that the contents of this work have no conflict of interest with any individual or organization.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Araque, D., Ramírez-Ortega, D., Acevedo-Peña, P. et al. Photocatalytic degradation of 2,4-dichlorophenol on ZrO2–TiO2: influence of crystal size, surface area, and energetic states. J Mater Sci: Mater Electron 31, 3332–3341 (2020). https://doi.org/10.1007/s10854-020-02881-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02881-2

Navigation