Log in

Effect of low-valence vanadium buffer layer on the properties of vanadium oxide film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Vanadium dioxide (VO2) is a promising candidate for implementing switching modulation devices due to its well-known metal-to-insulator transition (MIT). In addition, the application of VO2 on modulation devices requires a narrow hysteresis loop width and a large phase transition amplitude, which is related to significant changes of electrical properties. In this paper, by adding a low-valence vanadium buffer layer, it is possible to increase the phase transition amplitude, reduce the loop width, and reduce the phase transition temperature. The VO2 film deposited at a argon–oxygen ratio of 98:0.5 with a buffer layer (sputtering time: 1 min) demonstrated excellent properties: phase transition amplitude of 819 times, loop width of 10.3 °C, and phase transition temperature of 58.2 °C, which is better than that of pure VO2 film with phase transition amplitude of 253 times, loop width of 17.8 °C, and phase transition temperature of 66 °C. As the thickness of the buffer layer increases, the phase change amplitude of the film decreases, and the width of the loop decreases. When the buffer layer was sputtered for 2 min, the loop width was only 5.4 °C, and it also maintained a high phase transition amplitude of 423 times. The enhancement of the phase transition properties of the film is related to the high crystallinity of the buffer layer film. These results indicate that the MIT characteristics of the vanadium oxide film can be adjusted by the buffer layer composition and the thickness of the buffer layer, providing an effective solution for designing a switch modulation device based on vanadium oxide film with a suitable MIT property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F.J. Morin, Phys. Rev. Lett. 3, 34 (1959). https://doi.org/10.1103/PhysRevLett.3.34

    Article  CAS  Google Scholar 

  2. S.B. Choi, J.S. Kyoung, H.S. Kim et al., Appl. Phys. Lett. 98(7), 071105 (2011). https://doi.org/10.1063/1.3553504

    Article  CAS  Google Scholar 

  3. A. Zimmers, L. Aigouy, M. Mortier et al., Phys. Rev. Lett. 110, 056601 (2013). https://doi.org/10.1103/PhysRevLett.110.056601

    Article  CAS  Google Scholar 

  4. D. Li, A.A. Sharma, D.K. Gala et al., ACS Appl. Mater. Interfaces 8, 12908 (2016). https://doi.org/10.1021/acsami.6b03501

    Article  CAS  Google Scholar 

  5. M. Rini, A. Cavalleri, R.W. Schoenlein et al., Opt. Lett. 30, 558 (2005)

    Article  CAS  Google Scholar 

  6. A. Cavalleri, C. Toth, C.W. Siders et al., Phys. Rev. Lett. 87, 237401 (2001). https://doi.org/10.1103/PhysRevLett.87.237401

    Article  CAS  Google Scholar 

  7. W.K. Hong, J.B. Park, J. Yoon et al., Nano Lett. 13, 1822 (2013). https://doi.org/10.1021/nl400511x

    Article  CAS  Google Scholar 

  8. Y. Gao, S. Wang, H. Luo et al., Energy Environ. Sci. 5(3), 6104–6110 (2012). https://doi.org/10.1039/c2ee02803d

    Article  CAS  Google Scholar 

  9. J. Zhu, Y. Zhou, B. Wang et al., ACS Appl. Mater. Interfaces 7, 27796 (2015). https://doi.org/10.1021/acsami.5b09011

    Article  CAS  Google Scholar 

  10. K. Abbas, J. Hwang, G. Bae, H. Choi, D.J. Kang, ACS Appl. Mater. Interfaces 9, 13571 (2017). https://doi.org/10.1021/acsami.6b16424

    Article  CAS  Google Scholar 

  11. E. Strelcov, Y. Lilach, A. Kolmakov, Nano Lett. 9, 2322 (2009)

    Article  CAS  Google Scholar 

  12. M.D. Goldflam, T. Driscoll, B. Chapler et al., Appl. Phys. Lett. 99(4), 044103 (2011). https://doi.org/10.1063/1.3615804

    Article  CAS  Google Scholar 

  13. M. Wan, M. **ong, N. Li et al., Appl. Surf. Sci. 410, 363 (2017). https://doi.org/10.1016/j.apsusc.2017.03.138

    Article  CAS  Google Scholar 

  14. M. Wan, B. Liu, S. Wang et al., J. Alloy. Compd. 706, 289 (2017). https://doi.org/10.1016/j.jallcom.2017.02.151

    Article  CAS  Google Scholar 

  15. V. Théry, A. Boulle, A. Crunteanu et al., J. Appl. Phys. 121(5), 055303 (2017). https://doi.org/10.1063/1.4975117

    Article  CAS  Google Scholar 

  16. X. Lv, Y. Cao, L. Yan, Y. Li, L. Song, Appl. Surf. Sci. 396, 214 (2017). https://doi.org/10.1016/j.apsusc.2016.10.044

    Article  CAS  Google Scholar 

  17. J. Jian, X. Wang, L. Li et al., ACS Appl. Mater. Interfaces 9, 5319 (2017). https://doi.org/10.1021/acsami.6b13217

    Article  CAS  Google Scholar 

  18. Y. Meng, K. Huang, Z. Tang et al., Appl. Surf. Sci. 427, 304 (2018). https://doi.org/10.1016/j.apsusc.2017.08.242

    Article  CAS  Google Scholar 

  19. G. Sun, X. Cao, X. Li et al., Sol. Energy Mater. Sol. Cells 161, 70 (2017). https://doi.org/10.1016/j.solmat.2016.11.036

    Article  CAS  Google Scholar 

  20. K. Hu, Y. Yang, B. Hong et al., J. Alloy. Compd. 699, 575 (2017). https://doi.org/10.1016/j.jallcom.2016.12.412

    Article  CAS  Google Scholar 

  21. X. Dong, Z. Wu, X. Xu, T. Wang, Y. Jiang, Vacuum 104, 97 (2014). https://doi.org/10.1016/j.vacuum.2014.01.020

    Article  CAS  Google Scholar 

  22. D.-P. Zhang, M.-D. Zhu, Y. Liu et al., J. Alloy. Compd. 659, 198 (2016). https://doi.org/10.1016/j.jallcom.2015.11.047

    Article  CAS  Google Scholar 

  23. C. Kang, C. Zhang, L. Zhang et al., Appl. Surf. Sci. 463, 704 (2019). https://doi.org/10.1016/j.apsusc.2018.08.193

    Article  CAS  Google Scholar 

  24. H. Koo, L. Xu, K.-E. Ko, S. Ahn, S.-H. Chang, C. Park, J. Mater. Eng. Perform. 22, 3967 (2013). https://doi.org/10.1007/s11665-013-0696-7

    Article  CAS  Google Scholar 

  25. L. Hu, H. Tao, G. Chen et al., J. Sol-Gel. Sci. Technol. 77, 85 (2015). https://doi.org/10.1007/s10971-015-3832-z

    Article  CAS  Google Scholar 

  26. N. Shen, B. Dong, C. Cao et al., Phys. Chem. Chem. Phys. 18, 28010 (2016). https://doi.org/10.1039/c6cp05143j

    Article  CAS  Google Scholar 

  27. C. Piccirillo, R. Binions, I.P. Parkin, Eur. J. Inorg. Chem. 2007, 4050 (2007). https://doi.org/10.1002/ejic.200700284

    Article  CAS  Google Scholar 

  28. Y. Li, Y. Liu, J. Liu, L. Ren, J. Mater. Sci. 27, 4981 (2016). https://doi.org/10.1007/s10854-016-4384-x

    Article  CAS  Google Scholar 

  29. T.J. Hanlon, J.A. Coath, M.A. Richardson, Thin Solid Films 436, 269 (2003). https://doi.org/10.1016/s0040-6090(03)00602-3

    Article  CAS  Google Scholar 

  30. G.R. Khan, K. Asokan, B. Ahmad, Thin Solid Films 625, 155 (2017). https://doi.org/10.1016/j.tsf.2017.02.006

    Article  CAS  Google Scholar 

  31. W. Burkhardt, T. Christmann, B. Meyer, W. Niessner, D. Schalch, A. Scharmann, Thin Solid Films 345, 229 (1999)

    Article  CAS  Google Scholar 

  32. R. Aliev, V. Klimov, Phys. Solid State 46, 532 (2004)

    Article  CAS  Google Scholar 

  33. R. Aliev, V. Andreev, V. Kapralova, V. Klimov, A. Sobolev, E.B. Shadrin, Phys. Solid State 48, 929 (2006)

    Article  CAS  Google Scholar 

  34. R. Lopez, T.E. Haynes, L.A. Boatner, L.C. Feldman, R.F. Haglund, Phys Rev B 65(22), 224113 (2002). https://doi.org/10.1103/PhysRevB.65.224113

    Article  CAS  Google Scholar 

  35. T.-W. Chiu, K. Tonooka, N. Kikuchi, Thin Solid Films 518, 7441 (2010). https://doi.org/10.1016/j.tsf.2010.05.019

    Article  CAS  Google Scholar 

  36. R. Binions, G. Hyett, C. Piccirillo, I.P. Parkin, J. Mater. Chem. 17(44), 4652–4660 (2007). https://doi.org/10.1039/b708856f

    Article  CAS  Google Scholar 

  37. J.Y. Suh, R. Lopez, L.C. Feldman, R.F. Haglund, J. Appl. Phys. 96, 1209 (2004). https://doi.org/10.1063/1.1762995

    Article  CAS  Google Scholar 

  38. J.F. De Natale, P.J. Hood, A.B. Harker, J. Appl. Phys. 66, 5844 (1989). https://doi.org/10.1063/1.343605

    Article  Google Scholar 

  39. E.U. Donev, R. Lopez, L.C. Feldman, R.F. Haglund Jr., Nano Lett. 9, 702 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (No. 61421002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Wu or **ang Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ang, Z., Wu, Z., Zhang, F. et al. Effect of low-valence vanadium buffer layer on the properties of vanadium oxide film. J Mater Sci: Mater Electron 31, 1715–1721 (2020). https://doi.org/10.1007/s10854-019-02689-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02689-9

Navigation