Log in

Impedance spectrum and magnetic properties of BiFe0.95Ti0.05O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic BiFe0.95Ti0.05O3 (BFTO) powders were synthesized by sol–gel method, and then compacted by spark plasmas sintering (SPS) at 650 °C. Analysis of structure and morphology suggested the formation of a distorted rhombohedral in BFTO ceramics with a homogeneous distribution in grain sizes. BFTO ceramics revealed electric homogenous properties verified from the plots of complex impedance versus frequency. The contribution of oxygen vacancies in the behaviors of dielectric and ac conductivity was analyzed. At high temperature (473 K), the dielectric relaxation and ac conductivity were mainly attributed to the motion of oxygen vacancies. Do** of Ti4+ in BiFeO3 ceramics showed a high remanent magnetization due to the structural evolution and the broken of the spiral magnetic ordering in BiFeO3 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Mitra, C. Lin, J. Robertson, A.A. Demkov, Phys. Rev. B 86, 155105 (2012)

    Article  Google Scholar 

  2. R.A.D. Souza, Adv. Funct. Mater. 25, 6326 (2015)

    Article  Google Scholar 

  3. Q. Ke, X. Lou, Y. Wang, J. Wang, Phys. Rev. B 82, 024102 (2010)

    Article  Google Scholar 

  4. F. Xue, L. Tang, G. Jian, W. Li, J. Mater. Sci. 28, 9344 (2017)

    Google Scholar 

  5. Q. Fu, F. Xue, Z. Zheng, L. Zhou, Y. Tian, Ceram. Int. 41, 4050 (2015)

    Article  Google Scholar 

  6. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, Science 299, 1719 (2003)

    Article  Google Scholar 

  7. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Article  Google Scholar 

  8. M.M. Yang, M. Alexe, Adv. Mater. 30, 1704908 (2018)

    Article  Google Scholar 

  9. L.F. Henrichs, O. Cespedes, J. Bennett et al., Adv. Funct. Mater. 26, 2111 (2016)

    Article  Google Scholar 

  10. N. Masó, A.R. West, Chem. Mater. 24, 2127 (2012)

    Article  Google Scholar 

  11. C.H. Yang, J. Seidel, S.Y. Kim, Nat. Mater. 8, 485 (2009)

    Article  Google Scholar 

  12. T.R. Paudel, S.S. Jaswal, E.Y. Tsymbal, Phys. Rev. B 85, 104409 (2012)

    Article  Google Scholar 

  13. R. Agarwal, Y. Sharma, S. Hong et al., J. Phys. D 51, 275303 (2018)

    Article  Google Scholar 

  14. T. Wang, S.H. Song, M. Wang et al., Ceram. Int. 42, 7328 (2016)

    Article  Google Scholar 

  15. J. Kolte, A.S. Daryapurkar, D.D. Gulwade et al., Ceram. Int. 42, 12914 (2016)

    Article  Google Scholar 

  16. X.H. Zheng, Z.H. Ma, P.J. Chen, D.P. Tang, N. Ma, J. Mater. Sci. 23, 1533 (2012)

    Google Scholar 

  17. Reetu, A. Agarwal, S. Sanghi et al., J. Appl. Phys. 110, 024105 (2011)

    Article  Google Scholar 

  18. Y.K. Jun, W.T. Moon, C.M. Chang et al., Solid State Commun. 135, 133 (2005)

    Article  Google Scholar 

  19. C. Lan, Y. Jiang, S. Yang, J. Mater. Sci. 46, 734 (2011)

    Article  Google Scholar 

  20. J. **e, C. Feng, X. Pan et al., Ceram. Int. 40, 703 (2014)

    Article  Google Scholar 

  21. I.M. Reaney, I. Maclaren, L. Wang et al., Appl. Phys. Lett. 100, 182902 (2012)

    Article  Google Scholar 

  22. Y. Wang, C.W. Nan, Appl. Phys. Lett. 89, 052903 (2006)

    Article  Google Scholar 

  23. Y.H. Gu, Y. Wang, F. Chen et al., J. Appl. Phys. 108, 094112 (2010)

    Article  Google Scholar 

  24. C. Gumiel, T. Jardiel, M.S. Bernardo et al., Ceram. Int. 45, 5276 (2009)

    Article  Google Scholar 

  25. M.S. Bernardo, T. Jardiel, M. Peiteado et al., Chem. Mater. 25, 1533 (2013)

    Article  Google Scholar 

  26. D. Li, W. Zheng, D. Zheng et al., ACS Appl. Mater. Inter. 8, 11265 (2016)

    Google Scholar 

  27. F. Xue, Q. Fu, D. Zhou et al., J. Phys. D 48, 305004 (2015)

    Article  Google Scholar 

  28. F.D. Morrison, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 84, 531 (2001)

    Article  Google Scholar 

  29. H. Beltran, E. Cordoncillo, P. Escribano, J. Am. Ceram. Soc. 87, 2132 (2004)

    Article  Google Scholar 

  30. S. Nandy, K. Kaur, P.S.V. Mocherla, J. Appl. Phys. 124, 195108 (2018)

    Article  Google Scholar 

  31. T. Patri, S.K. Mandal, A. Chandra, J. Appl. Phys. 116, 244105 (2014)

    Article  Google Scholar 

  32. S. Kumari, N. Ortega, A. Kumar et al., J. Appl. Phys. 117, 759 (2015)

    Article  Google Scholar 

  33. J. Wu, J. Wang, J. Am. Ceram. Soc. 93, 2795 (2010)

    Article  Google Scholar 

  34. Y. Yao, T. Tao, B. Liang, C.L. Mak, S.G. Lu, Ceram. Int. 45, 1308 (2019)

    Article  Google Scholar 

  35. Y. Tian, F. Xue, Q. Fu et al., J. Magn. Magn. Mater. 435, 154 (2017)

    Article  Google Scholar 

  36. S.H. Song, Q.S. Zhu, L.Q. Weng, V.R. Mudinepalli, J. Eur. Ceram. Soc. 35, 131 (2015)

    Article  Google Scholar 

  37. J. Xu, D. **e, C. Yin, J. Appl. Phys. 114, 154103 (2013)

    Article  Google Scholar 

  38. T.J. Park, G.C. Papaefthymiou, A.J. Viescas et al., Nano Lett. 7, 766 (2007)

    Article  Google Scholar 

  39. S. Vijayanand, M.B. Mahajan, H.S. Potdar, P.A. Joy, Phys. Rev. B 80, 064423 (2009)

    Article  Google Scholar 

  40. Q. Xua, H. Zai, D. Wu, Y.K. Tang, M.X. Xu, J. Alloy. Comp. 485, 13 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of Department of Education (GJJ180982) and National Natural Science Foundation of China (No. 61504078). We acknowledge the assistance by the Analytical and Testing Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Xue, F. Impedance spectrum and magnetic properties of BiFe0.95Ti0.05O3 ceramics. J Mater Sci: Mater Electron 30, 15452–15459 (2019). https://doi.org/10.1007/s10854-019-01921-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01921-w

Navigation