Log in

Optimization of Ge substrates for ZnO deposition and their application for CO2 detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work focuses on the deposition of ZnO thin films on crystalline and porous Germanium substrates for hazardous gas detection. The porous Ge substrates were obtained by means of surface exfoliation by using H+ implantation and subsequent annealing. Morphological analysis revealed the formation of pores in the range between 1 and 5 µm. The deposition of ZnO thin films has been made on crystalline and porous Ge substrates utilizing the dip coating method. Structural and morphological characterizations confirmed the formation of highly porous polycrystalline ZnO film exclusively on porous Ge substrates. All the obtained samples were tested for their sensitivities at 0.1, 0.5, 1 and 2% of CO2 concentrations. The ZnO films deposited on porous Ge exhibited an increment of sensing response by a factor of 2, which is correlated to the increment of the superficial area induced by the substrate. Maximum sensing response ~ 50% was achieved for 2% of CO2 when measured at 300 °C. ZnO over porous Ge films showed complete resistance recovery, whereas ZnO over crystalline Ge showed a drift in the recovery resistance. ZnO deposited porous Ge showed the fastest response and recovery time ~ 25 and 10 s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.J. Church, A.L. Parsons, Modified atmosphere packaging technology: a review. J. Sci. Food Agric. 67(2), 143–152 (1995)

    Article  CAS  Google Scholar 

  2. Dansk geologisk forening, Bulletin of the Geological Society of Denmark. Geological Society of Denmark

  3. J. Etoh, S. Taguchi, E. Izawa, Gas measurement of fluid inclusions from the Hishikari epithermal gold deposit, Southern Kyushu, Japan, Using Laser Raman Microprobe. Resour. Geol. 52(4), 405–408 (2002)

    Article  CAS  Google Scholar 

  4. J.G. Allen, P. MacNaughton, U. Satish, S. Santanam, J. Vallarino, J.D. Spengler, Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments. Environ. Health Perspect. 124, 6 (2015)

    Google Scholar 

  5. W.J. Fisk, A.H. Rosenfeld, Estimates of improved productivity and health from better indoor environments. Indoor Air 7(3), 158–172, (1997)

    Article  Google Scholar 

  6. K. Küsel, T. Dorsch, Effect of supplemental electron donors on the microbial reduction of Fe(III), sulfate, and CO2 in coal mining–impacted freshwater lake sediments. Microb. Ecol. 40(3), 238–249

  7. I. Chemistry, C. Division, Chemo—resistive CO2 gas sensor based on CuO–SnO2 heterojunction nanocomposite material, pp. 8–10, 2015

  8. P.M. Shirage, K. Rana, Y. Kumar, S. Sen, RSC Advances a simple wet chemical method as excellent materials for CO and CO2 gas sensing. RSC Adv. 6, 82733–82742 (2016)

    Article  CAS  Google Scholar 

  9. T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Mesoporous materials as gas sensors. Chem. Soc. Rev. Chem. Soc. Rev 42(42), 4036–4053 (2013)

    Article  CAS  Google Scholar 

  10. T.V.K. Karthik, M. De La, L. Olvera, A. Maldonado, V. Velumurugan, Sensing properties of undoped and Pt-doped SnO2 thin films deposited by chemical spray. Mater. Sci. Semicond. Process. 37, 143–150 (2015)

    Article  CAS  Google Scholar 

  11. T.V.K. Karthik, A. Maldonado, Manufacturing of tin oxide pellets and their application for CO and C3H8 gas sensors.

  12. A.P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, F. Iacomi, Study on Ni-doped ZnO films as gas sensors. Appl. Surf. Sci. 280, 598–604 (2013)

    Article  CAS  Google Scholar 

  13. G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10(6), 5469–5502 (2010)

    Article  CAS  Google Scholar 

  14. H. Shokry Hassan, A.B. Kashyout, I. Morsi, A.A.A. Nasser, I. Ali, Synthesis, characterization and fabrication of gas sensor devices using ZnO and ZnO: In nanomaterials. Beni-Suef Univ. J. Basic Appl. Sci. 3(3), 216–221 (2014)

    Article  Google Scholar 

  15. A. Gankanda, D.M. Cwiertny, V.H. Grassian, Role of atmospheric CO2 and H2O adsorption on ZnO and CuO nanoparticle aging: formation of new surface phases and the impact on nanoparticle dissolution. J. Phys. Chem. C 120(34), 19195–19203 (2016)

  16. H. Shokry Hassan, A.B. Kashyout, H.M.A. Soliman, M.A. Uosif, N. Afify, Effect of reaction time and Sb do** ratios on the architecturing of ZnO nanomaterials for gas sensor applications. Appl. Surf. Sci. 277, 73–82 (2013)

    Article  CAS  Google Scholar 

  17. N. Van Hieu, N.D. Khoang, D.D. Trung, L.D. Toan, N. Van Duy, N.D. Hoa, Comparative study on CO2 and CO sensing performance of LaOCl-coated ZnO nanowires. J. Hazard. Mater. 244, 209–216 (2013)

    Article  CAS  Google Scholar 

  18. D.H. Kim, J.Y. Yoon, H.C. Park, K.H. Kim, CO2-sensing characteristics of SnO2 thick film by coating lanthanum oxide. Sens. Actuat. B Chem. 62(1), 61–66 (2000)

    Article  CAS  Google Scholar 

  19. L. Martínez, J.T. Holguín-Momaca, T.V.K. Karthik, S.F. Olive-Méndez, J. Campos-Alvarez, V. Agarwal, Sputtering temperature dependent growth kinetics and CO2 sensing properties of ZnO deposited over porous silicon. Superlattices Microstruct. 98, 8–17 (2016)

    Article  CAS  Google Scholar 

  20. J.M. Zahler, A. Fontcuberta i Morral, M.J. Griggs, H.A. Atwater, Y.J. Chabal, Role of hydrogen in hydrogen-induced layer exfoliation of germanium. Phys. Rev. B 75(3), 35309 (2007)

    Article  CAS  Google Scholar 

  21. S. Hayashi, D. Bruno, M.S. Goorsky, Temperature dependence of hydrogen-induced exfoliation of InP. Appl. Phys. Lett. 85(2), 236–238 (2004)

    Article  CAS  Google Scholar 

  22. J. Lee, C. Lee, H.-E. Song, B.-Y. Jang, W. Yoon, Acoustic emission characterization of hydrogen-induced exfoliation of silicon. Nanosci. Nanotechnol. Lett. 8(1), 62–65 (2016)

    Article  Google Scholar 

  23. A.J. Pitera, E.A. Fitzgerald, Hydrogen gettering and strain-induced platelet nucleation in tensilely strained Si0.4Ge0.6/Ge for layer exfoliation applications. J. Appl. Phys. 97(10), 104511 (2005)

    Article  CAS  Google Scholar 

  24. C.M. Varma, Hydrogen-implant induced exfoliation of silicon and other crystals. App. Phys. Letters 71, 3419 (1998)

    Google Scholar 

  25. J.M. Zahler, C.-G. Ahn, S. Zaghi, H.A. Atwater, C. Chu, P. Iles, Ge layer transfer to Si for photovoltaic applications. Thin Solid Films 403–404, 558–562 (2002)

    Article  Google Scholar 

  26. X. **a, J. Tu, Y. Zhang, X. Wang, C. Gu, X.B. Zhao, H.J. Fan, High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6(6), 5531–5538 (2012)

    Article  CAS  Google Scholar 

  27. M. Balucani, P. Nenzi, E. Chubenko, A. Klyshko, V. Bondarenko, Electrochemical and hydrothermal deposition of ZnO on silicon: from continuous films to nanocrystals. J. Nanoparticle Res. 13(11), 5985–5997 (2011)

    Article  CAS  Google Scholar 

  28. Q. Ma, B. Zhai, Y.M. Huang, Sol–gel derived ZnO/porous silicon composites for tunable photoluminescence. J. Sol–Gel Sci. Technol. 64(1), 110–116 (2012)

    Article  CAS  Google Scholar 

  29. N. Rusli, M. Tanikawa, M. Mahmood, K. Yasui, A. Hashim, Growth of high-density zinc oxide nanorods on porous silicon by thermal evaporation. Materials (Basel) 5(12), 2817–2832 (2012)

    Article  CAS  Google Scholar 

  30. T. Prakash, G. Neri, A. Bonavita, E. Ranjith Kumar, K. Gnanamoorthi, Structural, morphological and optical properties of Bi-doped ZnO nanoparticles synthesized by microwave irradiation method. J. Mater. Sci.: Mater. Electron. 26, 4913 (2015)

    CAS  Google Scholar 

  31. S.M. Pawar, B.S. Pawar, J.H. Kim, O.S. Joo, C.D. Lokhande, Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films. Curr. Appl. Phys. 11(2), 117–161 (2011)

    Article  Google Scholar 

  32. P. O’Brien, T. Saeed, J. Knowles, Speciation and the nature of ZnO thin films from chemical bath deposition J. Mater. Chem. 6(7), 1135–1139, 1996

    Article  Google Scholar 

  33. S. Dalui, S.N. Das, R.K. Roy, R.N. Gayen, A.K. Pal, Aligned zinc oxide nanorods by hybrid wet chemical route and their field emission properties. Thin Solid Films 516(23), 8219–8226 (2008)

    Article  CAS  Google Scholar 

  34. D. harvey, Chapter 8 Gravimetric Methods 8A Overview of Gravimetric Methods 8B Precipitation Gravimetry 8C Volatilization Gravimetry 8D Particulate Gravimetry 8E Key Terms 8F Chapter Summary 8G Problems 8H Solutions to Practice Exercises.

  35. T.V.K. Karthik, M. de la L. Olvera, A. Maldonado, Sensors based on tin oxide pellets. Sens. Lett. 12(10), 1513–1518 (2014)

    Article  Google Scholar 

  36. U. Dadwal, M. Reiche, R. Singh (2012). Ion implantation-induced layer splitting of semiconductors, ion implantation, Mark Goorsky (Ed.), InTech, 10.5772/35956. https://mts.intechopen.com/books/ion-implantation/ion-implantation-induced-layer-splitting-of-semiconductors

  37. S.O. Kucheyev, J.S. Williams, S.J. Pearton, Ion implantation into GaN, Mater. Sci. Eng. 33(2–3), 51–108, https://doi.org/10.1016/S0927-796X(01)00028-6 (2001)

    Article  Google Scholar 

  38. G. Angélica, A. Hernández, White luminescence emission from silicon implanted germanium. Appl. Surf. Sci. 428, 1098–1105 (2018). https://doi.org/10.1016/j.apsusc.2017.09.234. ISSN 0169–4332

    Article  CAS  Google Scholar 

  39. Q.-Y. Tong, K. Gutjahr, S. Hopfe, U. Gösele, T.-H. Lee, Layer splitting process in hydrogen-implanted Si, Ge, SiC, and diamond substrates. Appl. Phys. Lett. 70, 1390 (1997). https://doi.org/10.1063/1.118586

    Article  CAS  Google Scholar 

  40. M.L. David, F. Pailloux, M. Drouet, M.F. Beaufort, J.F. Barbot, E. Simoen, C. Claeys, Solid State Phenomena 131–133, 101–106 (2008)

    Google Scholar 

  41. C. **g, C. Zhang, X. Zang, W. Zhou, W. Bai, T. Lin, J. Chu, Sci. Technol. Adv. Mater. 10, 065001 (2009)

    Article  CAS  Google Scholar 

  42. D.N. Montenegro, V. Hortelano, O. Martíınez, M.C. Martíez-Tomas, V. Sallet, V. Muñoz-Sanjosé, J. Jiménez. J. Phys. D: Appl. Phys. 46, 235302 (2013)

    Article  CAS  Google Scholar 

  43. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 83(10), 8 (2003)

    Article  CAS  Google Scholar 

  44. K. Prashant, R.K. Sharma, R.J. Dutta, A. C. Pandey, CrystEngComm 15, 4438 (2013)

    Article  Google Scholar 

  45. X.-B. Leah Bergman, J. Chen, J.L. Huso, Morrison, H. Hoeck, J. Appl. Phys. 98, 093507 (2005)

    Article  CAS  Google Scholar 

  46. S. Kuriakose, B. Satpati, S. Mohapatra, Phys. Chem. Chem. Phys. 16, 12741 (2014)

    Article  CAS  Google Scholar 

  47. R. Cuscó, B. Wang, M.J. Callahan, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez. Phys. Rev. B 75, 165202 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Mexican National Council for Science and Technology (CONACYT), Project No. CB-254903. Authors would like to thank to PRODEP for their financial support by the project UAEH-PTC-801 No. 511-6/18-8661. A special thanks to Ph.D student Cecilia Salinas-Fuentes for her assistance in SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. K. Karthik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, A.G., Kudriavtsev, Y., Karthik, T.V.K. et al. Optimization of Ge substrates for ZnO deposition and their application for CO2 detection. J Mater Sci: Mater Electron 30, 6660–6668 (2019). https://doi.org/10.1007/s10854-019-00975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00975-0

Navigation