Log in

Employing novel Janus nanobelts to achieve anisotropic conductive array pellicle functionalized by superparamagnetism and green fluorescence

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

At present, the nanobelts with coaxial or Janus structure, which provide at most two subareas, have been reported. The nanobelts with more than two subareas have not been proposed. Here, we report the flexible, especial-structured Janus nanobelts array pellicle that has three functions of anisotropically electrical conduction, superparamagnetism and photoluminescence. Each especial-structured Janus nanobelt comprises a photoluminescent-superparamagnetic dual functional [Fe3O4/polymethyl methacrylate (PMMA)]@[Tb(BA)3phen/PMMA] co-axis nanobelt and an adjacent conductive polyaniline (PANI)/PMMA nanobelt. In addition, all the especial-structured Janus nanobelts are ordered in the same orientation to form a two-dimensional (2D) array pellicle. The conduction along the length orientation can reach 108 higher than that in the width orientation (two vertical orientations), and thus, the array pellicle has outstanding anisotropically electric conductance. Moreover, we can adjust the degree of electroconductive anisotropy of the specimens by changing the amount of PANI. Under the 281-nm excitation, the main green light emission at 545 nm was clearly observed in the Janus nanobelts array pellicle. Furthermore, the Janus nanobelts array pellicle also combines with excellent tunable superparamagnetism. The concept and manufacturing technology of the novel Janus nanobelts array pellicle provide a simple method to preparing multifunctional pellicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C.M. Zhang, J. Yang, Z.W. Quan, P.P. Yang, C.X. Li, Z.Y. Hou, J. Lin, Cryst. Growth Des. 9, 2725–2733 (2009)

    Article  Google Scholar 

  2. R. Bhandari, M.R. Knecht, Langmuir 28, 8110–8119 (2012)

    Article  Google Scholar 

  3. M.J. Yim, K.W. Paik, IEEE T. Comp. Pack. Man. 21, 233–242 (1997)

    Google Scholar 

  4. J.H. Liu, R. Yang, S.M. Li, J. Environ. Sci. 18, 979–982 (2006)

    Article  Google Scholar 

  5. N.I. Kovtyukhova, T.E. Mallouk, J. Phys. Chem. B. 109, 2540–2545 (2005)

    Article  Google Scholar 

  6. C. Feng, K. Liu, J.S. Wu, L. Liu, J.S. Cheng, Y.Y. Zhang, Y.H. Sun, Q.Q. Li, S.S. Fan, K.L. Jiang, Adv. Funct. Mater. 20, 885–891 (2010)

    Article  Google Scholar 

  7. J.R. Huang, Y.T. Zhu, W. Jiang, Q.X. Tang, ACS Appl. Mater. Interfaces 6, 1754–1758 (2014)

    Article  Google Scholar 

  8. W.A.D. Heer, A. Chatelain, D. Ugarte, Science 270, 1179–1181 (1995)

    Article  Google Scholar 

  9. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Adv. Funct. Mater. 25, 2436–2443 (2015)

    Article  Google Scholar 

  10. Q.L. Ma, W.S. Yu, X.T. Dong, M. Yang, J.X. Wang, G.X. Liu, Sci. Rep. 5, 14583 (2015)

    Article  Google Scholar 

  11. L. Han, M.M. Pan, Y. Lv, Y.T. Gu, X.F. Wang, D. Li, Q.L. Kong, X.T. Dong, J. Mater. Sci.-Mater. Eletron. 26, 677–684 (2015)

    Article  Google Scholar 

  12. X. **, Q.L. Ma, M. Yang, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 25, 4024–4032 (2014)

    Article  Google Scholar 

  13. J. Tian, Q.L. Ma, W.S. Yu, X.T. Dong, Y. Yang, B. Zhao, J.X. Wang, G.X. Liu, New J. Chem. 41, 13983–13992 (2017)

    Article  Google Scholar 

  14. Y.T. Geng, P. Zhang, Q.T. Wang, Y.X. Liu, K. Pan, J. Mater. Chem. B 5, 5390–5396 (2017)

    Article  Google Scholar 

  15. C. Luo, X.X. Wang, J.Q. Wang, K. Pan, Compos. Sci. Technol. 133, 97–103 (2016)

    Article  Google Scholar 

  16. X.B. Li, Q.L. Ma, J. Tian, X. **, D. Li, X.T. Dong, W.S. Yu, X.L. Wang, J.X. Wang, G.X. Liu, Nanoscale 9, 18918–18930 (2017)

    Article  Google Scholar 

  17. N. Lv, Z.G. Wang, W.Z. Bi, G.M. Li, J.L. Zhang, J.Z. Ni, J. Mater. Chem. B 4, 4402–4409 (2016)

    Article  Google Scholar 

  18. N. Lv, G.M. Li, X. Wang, J.L. Zhang, J.Z. Ni, J. Phys. Chem. C 121, 11926–11931 (2017)

    Article  Google Scholar 

  19. P. Zhang, C.L. Shao, X.H. Li, M.Y. Zhang, X. Zhang, C.Y. Su, N. Lu, K.X. Wang, Y.C. Liu, Phys. Chem. Chem. Phys. 25, 10453–10458 (2013)

    Article  Google Scholar 

  20. Y.C. Chou, C.L. Shao, X.H. Li, C.Y. Su, H.C. Xu, M.Y. Zhang, P. Zhang, X. Zhang, Y.C. Liu, Appl. Surf. Sci. 285, 509–516 (2013)

    Article  Google Scholar 

  21. K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 26, 5994–6003 (2015)

    Article  Google Scholar 

  22. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. Eng. J. 222, 16–22 (2013)

    Article  Google Scholar 

  23. H. Shao, Q.L. Ma, X.T. Dong, W.S. Yu, M. Yang, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 17, 21845–21855 (2015)

    Article  Google Scholar 

  24. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Nanoscale 6, 2945–2952 (2014)

    Article  Google Scholar 

  25. X. **, J.X. Wang, X.T. Dong, Q.L. Ma, W.S. Yu, G.X. Liu, Chem. Eng. J. 254, 259–267 (2014)

    Article  Google Scholar 

  26. X. **, Q.L. Ma, X.T. Dong, D. Li, W.S. Yu, J.X. Wang, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 29, 7119–7129 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51573023, 50972020), Natural Science Foundation of Jilin Province (20170101101JC, 20180520011JH), Industrial Technology Research and Development Project of Jilin Province Development and Reform Commission (2017C052-4), Science and Technology Research Planning Project of the Education Department of Jilin Province during the 13th 5-year plan period (JJKH20170608KJ, JJKH20181122KJ), and Innovative Foundation (XJJLG-2017-04) and Youth Foundation (XQNJJ-2016-01, XQNJJ-2017-17) of Changchun University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianli Ma or **angting Dong.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1737 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, X., Yu, W., Li, D. et al. Employing novel Janus nanobelts to achieve anisotropic conductive array pellicle functionalized by superparamagnetism and green fluorescence. J Mater Sci: Mater Electron 30, 4219–4230 (2019). https://doi.org/10.1007/s10854-019-00713-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00713-6

Navigation