Log in

Ti0.85Sn0.15O2 nanocomposite: an efficient semiconductor photocatalyst for degradation of pesticides under solar light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Heterogeneous semiconductor photocatalyst (Ti0.85Sn0.15O2) was synthesized by addition of TiO2 solution into Sn(OH)4 solution via sol–gel method using docusate sodium salt surfactant as model controlling agent while annealing at 800 °C. The structural, morphological and crystalline features of the synthesized sample were explored by using different microscopic and spectrophotometric techniques. The quantitative phase analysis and Rietveld refinement of XRD spectra was done to confirm the formation of Ti0.85 Sn0.15O2 nanocomposite. Optical electronegativity and refractive index was determined by using band gap energy. Their photocatalytic activity was estimated by using chlorpyrifos (CP) a class of organophosphorus pesticides, as a model of organic pollutants under solar light irradiations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Yang, Q. Li, L. Tang, A. Bai, H. Song, Y. Yu, Monodispersed colloidal zinc oxide nanospheres with various size scales: synthesis, formation mechanism, and enhanced photocatalytic activity. J. Mater. Sci. 51, 5445–5459 (2016)

    Article  Google Scholar 

  2. C. Wanga, B.-Q. Xua, X. Wangb, J. Zhao, Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture. J. Solid State Chem. 178, 3500–3506 (2005)

    Article  Google Scholar 

  3. S. Landi, J. Carneiro, S. Ferdov, A.M. Fonseca, I.C. Neves, M. Ferrei, P. Parpot, O.S. Soares, M.F. Pereira, Photocatalytic degradation of Rhodamine B dye by cotton textile coated with SiO2-TiO2 and SiO2-TiO2-HY composites. J. Photochem. Photobiol. A 346, 60–69 (2017)

    Article  Google Scholar 

  4. M. Zhou, J. Yu, S. Liu, P. Zhai, L. Jiang, Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method. J. Hazard. Mater. 154, 1141–1148 (2008)

    Article  Google Scholar 

  5. F. Heshmatpour, S. Zarrin, A probe into the effect of fixing the titanium dioxide by a conductive polymer and ceramic on the photocatalytic activity for degradation of organic pollutants. J. Photochem. Photobiol. A 346, 431–443 (2017)

    Article  Google Scholar 

  6. J. Yanga, X. Xu, Preparation of SnO2-TiO2/zeolite Y composites with enhanced photocatalytic activity. Mater. Sci. Forum 852, 1493–1498 (2016)

    Article  Google Scholar 

  7. .Z. He, J. Zhou, Synthesis, characterization, and activity of tin oxide nanoparticles: influence of solvothermal time on photocatalytic degradation of rhodamine B. Mod. Res Catal. 2, 13–18 (2013)

    Article  Google Scholar 

  8. I. Muneer, M.A. Farrukh, S. Javaid, M. Shahid, M. Khaleeq-ur-Rehman, Synthesis of Gd2O3/Sm2O3 nanocomposite via sonication and hydrothermal methods and its optical properties. Superlattices Microstruct. 77, 256–266 (2015)

    Article  Google Scholar 

  9. S. Javaid, M.A. Farrukh, I. Muneer, M. Shahid, M. Khaleeq-ur-Rahman, A.A. Umar, Influence of optical band gap and particle size on the catalytic properties of Sm/SnO2–TiO2 nanoparticles. Superlattices Microstruct. 82, 234–247 (2015)

    Article  Google Scholar 

  10. T. Naseem, M.A. Farrukh, Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and gardenia jasminoides leaves extract. J. Chem. 2015, 1–7 (2015)

    Article  Google Scholar 

  11. M. Arshad, M.A. Farrukh, A. Imtiaz, N. Noor, Solvent assisted synthesis of tin-zinc oxide nanoparticles:structural characterization and antimicrobial activity. Asian J. Chem. 27, 371–374 (2015)

    Article  Google Scholar 

  12. M.A. Farrukh, B.T. Heng, R. Adnan, Surfactant-controlled aqueous synthesis of SnO2 nanoparticles via the hydrothermal and conventional heating methods. Turk. J. Chem. 34, 537–550 (2010)

    Google Scholar 

  13. F. Iram, M.A. Farrukh, Synthesis of Fe doped SnO2-TiO2 nanocatalysts via solgel method and their structural and catalytic activities against pollutants, in Transferring nanotechnology concept towards business perspectives, ed. by S. Shimazu, S. Tursiloadi (Daya Publishing House, Astral International Pvt. Ltd., New Delhi, 2015), pp. 165–183

    Google Scholar 

  14. A. Amalraj, A. Pius, Photocatalytic degradation of monocrotophos and chlorpyrifos in aqueous solution using TiO2 under UV radiation. J. Water Process Eng. 7, 94–101 (2015)

    Article  Google Scholar 

  15. D. M.H. and A. Fadaei, Photocatalytic oxidation of organophosphorus pesticides using zinc oxide. Res. J. Chem. Environ. 16 104–109 (2012)

    Google Scholar 

  16. V.K. Guptaa, T. Erend, N. Atard, M.L. Yolae, C. Parlak, H. Karimi-Malehg, CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J. Mol. Liq. 208, 122–129 (2015)

    Article  Google Scholar 

  17. A. Imtiaz, M.A. Farrukh, Influence of CdS dopant on oxygen vacancies and Ce3+ formation in CeO2–ZnO nanocomposites: structural, optical and catalytic properties. J. Mater. Sci. Mater. Electron. 28, 2788–2794 (2017)

    Article  Google Scholar 

  18. S. Perveen, M.A. Farrukh, Influence of lanthanum precursors on the heterogeneous La/SnO2–TiO2 nanocatalyst with enhanced catalytic activity under visible light. J. Mater. Sci. Mater. Electron. 28, 10806–10818 (2017)

    Article  Google Scholar 

  19. V.G.G. Kanmoni, S. Daniel, G.A.G. Raj, Photocatalytic degradation of chlorpyrifos in aqueous suspensions using nanocrystals of ZnO and TiO2, React. Kinet. Mech. Catal. 106, 325–339 (2012)

    Article  Google Scholar 

  20. A. Verma, D. Dixit, Photocatalytic degradability of insecticide chlorpyrifos over UV irradiated titanium dioxide in aqueous phase. Int J. Environ. Sci. 3, 743–755 (2012)

    Google Scholar 

  21. M.F. Abdel-Messih, M.A. Ahmed, A. Shebl El-Sayed, Photocatalytic decolorization of rhodamine B dye using novel mesoporous SnO2–TiO2 nano mixed oxides prepared by sol–gel method. J. Photochem. Photobiol. A 260, 1–8 (2013)

    Article  Google Scholar 

  22. M.A. Ahmed, E.S. Yousef, M.F. Abdel-Messih, Preparation and characterization of nanocomposites in system as: SnO2–xTiO2 (where x = 25, 50 and 75 mol%). J. Sol-Gel Sci. Technol. 60, 58–65 (2011)

    Article  Google Scholar 

  23. J. Zhang, Q. Li, W. Cao, Preparation of (Ti,Sn)O2 nano-composite photocatalyst by super critical fluid dry combination technology. J. Mater. Sci. Technol 21, 191–195 (2005)

    Article  Google Scholar 

  24. H. Singh, K.L. Yadav, Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram. Int. 41, 9285–9295 (2015)

    Article  Google Scholar 

  25. C. Song, X. Dong, Preparation and characterization of tetracomponent ZnO/SiO2/SnO2/TiO2 composite nanofibers by electrospinning. Adv. Chem. Eng. Sci. 2, 108–111 (2012)

    Article  Google Scholar 

  26. J. Németh, I. Dékány, K. Süvegh, T. Marek, Z. Klencsár, A. Vértes, J.H. Fendler, Preparation and structural properties of tin oxide—montmorillonite nanocomposites. Langmuir 19, 3762–3769 (2003)

    Article  Google Scholar 

  27. L.A. Burton, A. Walsh, A photoactivet itanate with a stereochemically active Sn lonepair: electronic and crystal structure of Sn2TiO4 from computational chemistry. J. Sol. State Chem. 196, 157–160 (2012)

    Article  Google Scholar 

  28. R. Bargougui, A. Pichavant, J.-F. Hochepied, M.-H. Berger, Synthesis and characterization of SnO2, TiO2 and Ti0.5Sn0.5O2 nanoparticles as efficient materials for photocatalytic activity. Opt. Mater. 58, 253–259 (2016)

    Article  Google Scholar 

  29. E. Mahdi, A.S.M. Hamdi, M. Yusoff, M. Sulaiman, P. Wilfred, XRD and EDXRF analysis of anatase Nano-TiO2 synthesized from mineral precursors. Adv. Mater. Res. 620, 179–185 (2013)

    Article  Google Scholar 

  30. M.A. Farrukh, M. Shahid, I. Muneer, S. Javaid, M. Khaleeq-ur-Rahman, Influence of gadolinium precursor on the enhanced red shift of Gd/SnO2–TiO2 nanoparticles and catalytic activity. J. Mater. Sci. Mater. Electron. 27, 2994–3002 (2016)

    Article  Google Scholar 

  31. T. Theivasanthi, M. Alagar, Titanium dioxide (TiO2) nanoparticles—XRD analyses—an insight. Mater. Sci. 4, 1057–1068 (2013)

    Google Scholar 

  32. A. Afzaal, M.A. Farrukh, Zwitterionic surfactant assisted synthesis of Fe doped SnO2-SiO2 nanocomposite with enhanced photocatalytic activity under sun light. Mater. Sci. Eng. B 223, 167–177 (2017)

    Article  Google Scholar 

  33. T. Theivasanthi, M. Alagar, Electrolytic synthesis and characterizations of silver nanopowder. phy. gen-ph. 8, 1–12 (2011)

  34. C. **ng, Y. Zhang, W. Yan, L. Guo, Band structure-controlled solid solution of Cd1–x ZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrog. Energy 31, 2018–2024 (2006)

    Article  Google Scholar 

  35. S.K. Tripathy, A. Pattanaik, Refractive indices of semiconductors from energy gaps. Opt. Mater. 53, 123–133 (2016)

    Article  Google Scholar 

  36. N.R. Srinivasan, R. Bandyopadhyaya, SnxTi1–xO2 solid-solution-nanoparticle embedded mesoporous silica (SBA-15) hybrid as an engineered photocatalyst with enhanced activity. Faraday Discuss. 186, 353–370 (2016)

    Article  Google Scholar 

  37. L. Ran, D. Zhao, X. Gao, L. Yin, Highly crystalline Ti-doped SnO2 hollow structured photocatalyst with enhanced photocatalytic activity for degradation of organic dyes. CrystEngComm 17, 4225–4237 (2015)

    Article  Google Scholar 

  38. C. Wang, C. Shao, X. Zhang, Y. Liu, SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties. Inorg. Chem. 48, 7261–7268 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The author (MA Farrukh, Principal Investigator) is grateful to Higher Education Commission (HEC) to support this work through NRPU research Project No. 20-2660/NRPU/R&D/HEC/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhyar Farrukh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perveen, S., Farrukh, M.A. Ti0.85Sn0.15O2 nanocomposite: an efficient semiconductor photocatalyst for degradation of pesticides under solar light. J Mater Sci: Mater Electron 29, 3219–3230 (2018). https://doi.org/10.1007/s10854-017-8257-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8257-8

Navigation