Log in

Influence of lanthanum precursors on the heterogeneous La/SnO2–TiO2 nanocatalyst with enhanced catalytic activity under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Surfactant controlled synthesis of La/SnO2–TiO2 nanocomposite was studied by using anionic surfactant dioctyl sulfosuccinate sodium salt (DOSS) synthesized via sol–gel method followed by hydrothermal method by using different lanthanum precursors. The structural investigation, thermal degradation, kinetics, thermodynamics properties, crystallite size, morphology, surface and photocatalytic properties of synthesized samples were studied by using different characterization techniques i.e. Thermogravimetric analysis (TGA), Fourier transform-infrared spectroscopy (FTIR), Particle Size Analyzer (PSA), Powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Ultraviolet–Visible spectrophotometer (UV–VIS). Band gap calculations and optical properties of both SnO2–TiO2 and La/SnO2–TiO2 were studied by using UV–Visible spectroscopy. The performance of both SnO2–TiO2 and La/SnO2–TiO2 nanocomposites as a photocatalytic agent was also investigated for the degradation of methylene blue (MB) under the illumination of sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M. A. Ahmad, E. S. Yousaf, M. F. Abdel-Messih J. Sol-Gel Sci. Technol. 60, 58–65 (2011)

    Article  Google Scholar 

  2. B. Xavier, A. Ramanand, P. Sagayaraj Der Pharma Chem. 4, 1477–1480 (2012)

    Google Scholar 

  3. S. Ahmad, M. A. Farrukh, M. Khan, M. Khaleeq-ur-Rehman, M. A. Tahir, Can. Chem. Trans. 2, 122–133 (2014)

    Google Scholar 

  4. M. Arshad, M. A. Farrukh, S. Haneef, N. Aslam, A. Afzaal Lett. Health. Biol. Sci. 1, 1–5 (2016)

    Google Scholar 

  5. H. Perveen, M.A. Farrukh, M. Khaleeq-ur-Rehman, B. Munir, M.A. Tahir Russ. J. Phys. Chem. A 89, 99–107 (2015)

    Article  Google Scholar 

  6. M. Shahid, M.A. Farrukh, A.U. Akrajas, M. Khaleeq-ur-Rehman J. Phys. Chem. A 88, 836–844 (2014)

    Google Scholar 

  7. P. Pongwan, K. Wetchakun, S. Phanichphant, N. Wetchakun Res. Chem. Intermed. 42, 2815–2830 (2015)

    Article  Google Scholar 

  8. X. Lang, X. Chen, J. Zhao Chem. Soc. Rev. 43, 473–486 (2014)

    Article  Google Scholar 

  9. J. Chen, J. Cen, X. Xu, X. Li Catal. Sci. Technol. 3, 1–14 (2015)

    Google Scholar 

  10. K.K. Akurati, A. Vital, R. Hany, B. Bommer, T. Graule, M. Winterer Int. J. Photoenergy 7, 153–161 (2005)

    Article  Google Scholar 

  11. M.A. Farrukh, M. Shahid, I. Muneer, S. Javaid, M. Khaleeq-ur-Rehman, J. Mater. Sci. 27, 2994–3002 (2016)

    Google Scholar 

  12. S. Javaid, M.A. Farrukh, I. Muneer, M. Shahid, M. Khaleeq-ur-Rehman, A.A. Umar, Superlattices Microstruct. 82, 234–247 (2015)

    Article  Google Scholar 

  13. J. Sheng, H. Xu, C. Tang J. Environ. Anal. Toxicol. 6, 1–5 (2016)

    Article  Google Scholar 

  14. S. Kumar, M. Gupta, V. Sathe, T. Shripathi, D. M. Phase, B. Das ‎Phase Transit. 88, 1122–1136 (2015)

    Article  Google Scholar 

  15. X. Wang, A. Kafizas, X. Li, S.J.A. Moniz, P.J.T. Reardon, J. Tang, I.P. Parkin, J.R. Durrant, J. Phys. Chem. C 119, 10439–10447 (2015)

    Article  Google Scholar 

  16. H. F. Liu, B. J. Zheng, A. Q. Dao, S. T. Yi, D. S. Jiang, C. Y. Fu, F. **ao Mater. Res. Innov. 18, 707–710 (2014)

    Google Scholar 

  17. S.P. Kim, M.Y. Choi, H.C. Choi, Mater. Res. Bull. 74, 85–89 (2016)

    Article  Google Scholar 

  18. K.M. Butt, M.A. Farrukh, I. Muneer J. Mater. Sci. 27, 8493–8498 (2016)

    Google Scholar 

  19. S. Anandan, Y. Ikuma, V. Murugesan Int. J. Photoenergy 2012, 1–10 (2011)

    Article  Google Scholar 

  20. M.A. Farrukh, F. Naseem, A. Imtiaz, M. Khaleeq-ur-Rehman, T.D. Martins, K.M. Zia Russ. J. Phys. Chem. A 90, 1231–1237 (2016)

    Article  Google Scholar 

  21. R. Adnan, N.A. Razana, I.A. Rahman, M.A. Farrukh J. Chin. Chem. Soc 57, 222–229 (2010)

    Article  Google Scholar 

  22. B. Lavand, Y.S. Malghe, S.H. Singh Indian J. Mater. Sci. 2015, 1–9 (2015)

    Article  Google Scholar 

  23. M. Salavati-Niasari, G. Hosseinzadeha, F. Davar J. Alloys Compd. 509, 4098–4103 (2011)

    Article  Google Scholar 

  24. N. Wu, L. Chen, Y. Jiao, G. Chen, J. Li J. Eng. Fiber. Fabr. 7, 16–20 (2012)

    Google Scholar 

  25. C. Song, X. Dong, Adv. Chem. Eng. Sci. 2, 108–112 (2012)

    Article  Google Scholar 

  26. P. Shahla, F. Saeed, M. Mojtaba, E. Masood, Barton, ACT: Engineers Australia 1–9 (2013)

  27. C.L. Bianchi, S. Ardizzone, G. Cappelletti, Encyclopedia of Nanoscience and Nanotechnology (2014). doi:10.1081/E-ENN-120042107

  28. B. K. Kaleji and R. Sarraf-Mamoory Mater. R. Bull. 47, 362–369 (2012)

    Article  Google Scholar 

  29. M.B.A.Y. Gharayebi, M.S. Salit, M.Z. Hussein, S. Ebrahimiasl, A. Dehzangi Int. J. Mol. Sci. 13, 4860–4872 (2012)

    Article  Google Scholar 

  30. X. Yongjiang, X. Huaqing, W. Hongyan, l. Zhi**, F. Chaohe Oil shale. 28, 415–424 (2011)

    Article  Google Scholar 

  31. R. Ebrahimi-Kahrizsangi, M.H. Abbasi, Trans. Nonferrous Met. Soc. China 18, 217–221 (2008)

    Article  Google Scholar 

  32. S. Ramukutty and E. Ramachandran J. Crystal. Process Technol. 4, (2014)

  33. F. Yakuphanoglu J. Mater. Elect. Devices. 1, 21–27 (2015)

    Google Scholar 

  34. N. Naje, A. S. Norry and A. M. Suhail Int. J. Innov. Res. Sci. Eng. Technol. 2, 7068–7072 (2013)

    Google Scholar 

  35. R. Bargougui, K. Omri, A. Mhemdi, S. Ammar Adv. Mater. Lett. 6, 816–819 (2015)

    Google Scholar 

  36. G.E. Patil, D.D. Kajale, V.B. Gaikwad, G.H. Jain Int. Nano Lett. 2, 46–51 (2011)

    Google Scholar 

  37. K. Thamaphat, P. Limsuwan, B. Ngotawornchai Kasetsart J. Nat. Sci. 42, 357–361 (2008)

    Google Scholar 

  38. E.M. Mahdi, A. Shukor, M. Hamdi, M. Yusoff, M. Sulaiman, P. Wilfred Adv. Mater. Res. 620, 179–185 (2013)

    Article  Google Scholar 

  39. M. Gharagozlou Chem. Cent. J. 5, 1–7 (2011)

  40. A. Imtiaz, M.A. Farrukh, J. Mater. Sci. (2017) doi:10.1007/s10854-016-5859-5

  41. T. Theivasanthi, M. Alagar Chem. Phys. Mater. Sci. 4, 1057–1068 (2013)

    Google Scholar 

  42. D. Sridhar, N. Sriharan, Structural. J. Nanosci. Nanotechnol. 2, 94–98 (2014)

    Google Scholar 

  43. V.R.d.. Mendonca, O.F. Lopes, R.P. Fregonesi, T.R. Giraldi, C. Ribeiro, Appl. Surf. Sci. 298, 182–191 (2014)

    Article  Google Scholar 

  44. Z. Liu, Y. Wang, W. Chu, Z. Li, C. Ge J. Alloy. Compd. 501, 54–59 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Higher Education Commission (HEC) Pakistan to support this work through NRPU research Project No. 20-2660/NRPU/R&D/HEC/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhyar Farrukh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perveen, S., Farrukh, M.A. Influence of lanthanum precursors on the heterogeneous La/SnO2–TiO2 nanocatalyst with enhanced catalytic activity under visible light. J Mater Sci: Mater Electron 28, 10806–10818 (2017). https://doi.org/10.1007/s10854-017-6858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6858-x

Keywords

Navigation