Log in

Effects of CdCl2 annealing temperatures on the properties of pulsed laser deposited CdS thin films and CdS/CdTe solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a post annealing process in CdCl2 was applied to improve the quality of pulsed laser deposited CdS films, and the effect of annealing temperature on the quality of CdS films was studied. The research indicated that the grain size of CdS thin films obviously increased after the annealing process, and crystallinity and optical transmission performance of CdS films were enhanced as well. Moreover, the CdTe solar cell with the annealed CdS window layer obtained better performance. The annealing temperature is a significant factor in the annealing process. 420 °C may be an optimistic annealing temperature, since not only the CdS layer annealed at this temperature had good crystallinity and optical transmission performance with a relatively smooth surface, but also the photovoltaic device with this window layer obtained the best performance among all the samples, including higher short-circuit current, open-circuit voltage and efficiency, corresponding to 26.97 mA/cm2, 760.80 mV and 12.37% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Yang, D. Wang, L. Wan, D. Wang, RSC Adv. 4, 22162–22171 (2014)

    Article  Google Scholar 

  2. J.J. Loferski, J. Appl. Phys 27, 777 (1956)

    Article  Google Scholar 

  3. B.E. Mcandless, K.D. Dobson, Energy Sol. 77, 839–856 (2004)

    Article  Google Scholar 

  4. L.V. Garcia, S.L. Loredo, S. Shaji, J.A. Aguilar Martinez, D.A. Avellaneda, T.K. Das Roy, B. Krishnan, Mat. Res. Bull. 83, 459–467 (2016)

    Article  Google Scholar 

  5. J. Han, C. Liao, T. Jiang, G. Fu, V. Krishnakumar, C. Spanheimer, G. Haindl, K. Zhao, A. Klein, W. Jaegermann, Mat. Res. Bull. 46, 194–198 (2011)

    Article  Google Scholar 

  6. B. Ghosh, K. Kumar, B.K. Singh, P. Banerjee, S. Das, Appl. Surf. Sci. 320, 309–314 (2014)

    Article  Google Scholar 

  7. G.C. Ozcan, H.M. Gubur, S. Alpdogan, B.K. Zeyrek, J. Mater. Sci 27, 12148–12154 (2016)

    Google Scholar 

  8. L. Huang, Z.L. Wei, F.M. Zhang, X.S. Wu, J. Alloys Compd. 648, 591–594 (2015)

    Article  Google Scholar 

  9. Q. An, X. Meng, L. Zhang, Y. Zhao, Mater. Lett. 136, 55–58 (2014)

    Article  Google Scholar 

  10. O.K. Echendu, U.S. Mbamara, K.B. Okeoma, C. Iroegbu, C.A. Madu, I.C. Ndukwe, I.M. Dharmadasa, J. Mater. Sci. 27, 10180–10191 (2016)

    Google Scholar 

  11. J.M. Kephart, R.M. Geisthardt, W.S. Sampath, Prog. Photovolt. 23, 1484–1492 (2015)

    Article  Google Scholar 

  12. D. Kim, Y. Park, M. Kim, Mat. Res. Bull. 69, 78–83 (2015)

    Article  Google Scholar 

  13. B. Liu, R. Luo, B. Li, J. Zhang, W. Li, L. Wu, L. Feng, J. Wu, J. Alloys Compd. 654, 333–339 (2016)

    Article  Google Scholar 

  14. N. Romeo, A. Bosio, R. Tedeschi, A. Romeo, V. Canevari, Sol. Energy Mater. Sol. Cells 58, 209–218 (1999)

    Article  Google Scholar 

  15. W. Song, D. Mao, J.U. Trefny, AIP Conf Proceed. 462, 188–193 (1999)

    Article  Google Scholar 

  16. H. Feng, F. Hua, V. Krishnakumar, L. Cheng, W. Jaegermann, J. Mater. Sci. 24, 2695–2700 (2013)

    Google Scholar 

  17. M.M. Ristova, C. Francis, F.M. Toma, Sol. Energy Mater. Sol. Cells 147, 127–133 (2016)

    Article  Google Scholar 

  18. H. Khallaf, C. Chen, L. Chang, O. Lupan, A. Dutta, H. Heinrich, A. Shenouda, L. Chow, Appl. Surf. Sci. 257, 9237–9242 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61574094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Liu, B., He, S. et al. Effects of CdCl2 annealing temperatures on the properties of pulsed laser deposited CdS thin films and CdS/CdTe solar cells. J Mater Sci: Mater Electron 28, 9828–9835 (2017). https://doi.org/10.1007/s10854-017-6737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6737-5

Keywords

Navigation