Log in

Two dimensional MoS2/CNT hybrid ink for paper-based capacitive energy storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Develo** two dimensional (2D) materials based ink is an advanced method for fabricating printable and flexible electronic devices. 2D few-layered molybdenum disulfide (MoS2) reveals a great potential for capacitive energy storage because of its layered structure (for ion intercalation), high surface area (provide active sites) and multi-valence state of Mo (introduce pseudocapacitive reactions). These unique properties could intensively improve the potential of MoS2 for supercapacitors. However, MoS2 is a semiconductor with low conductivity, which limits its performance in electrochemistry. In the meantime, MoS2 based ink for flexible energy storage application has been barely investigated. In this work, we design a MoS2 and carbon nanotube (MoS2/CNT) hybrid ink that uses exfoliated MoS2 nanosheet and CNT to fabricate a paper-based supercapacitor. A strong synergistic effect between MoS2 and CNT in capacitive performance was observed due to the good conductivity of CNT and high capacitance of MoS2. Paper-based solid-state device is also fabricated which reveals good flexibility and high capacitive performance. This hybrid ink represents a new road for flexible paper-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Nat. Nanotechnol. 3, 210–215 (2008)

    Article  Google Scholar 

  2. C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235–246 (2013)

    Article  Google Scholar 

  3. T. Y. Ma, J. L. Cao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 55, 1138–1142 (2016)

    Article  Google Scholar 

  4. K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Adv. Mater. 24, 1868–1872 (2012)

    Article  Google Scholar 

  5. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Science 340, 1420 (2013)

    Article  Google Scholar 

  6. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Mater. Today 15, 564–589 (2012)

    Article  Google Scholar 

  7. J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, M. Ostling, Adv. Mater. 25, 3985–3992 (2013)

    Article  Google Scholar 

  8. D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, J. Mater. Chem. C 2, 925–932 (2014)

    Article  Google Scholar 

  9. W.J. Hyun, E.B. Secor, M.C. Hersam, C.D. Frisbie, L.F. Francis, Adv. Mater. 27, 109–115 (2015)

    Article  Google Scholar 

  10. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H. Gleeson, E.W. Hill, A.K. Geim, S.K. Novoselov, Nano Lett. 8, 1704–1708 (2008)

    Article  Google Scholar 

  11. K. Arapov, E. Rubingh, R. Abbel, J. Laven, G. de With, H. Friedric, Adv. Funct. Mater. 26, 586–593 (2016)

    Article  Google Scholar 

  12. Z.-S. Wu, K. Parvez, X. Feng, K. Muellen, Nat. Commun. 4, 2487 (2013)

    Google Scholar 

  13. Y. Yang, H. Fei, G. Ruan, C. **ang, J.M. Tour, Adv. Mater. 26, 8163–8168 (2014)

    Article  Google Scholar 

  14. J. Sun, H.-W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, Y. Cui, Nat. Nanotechnol. 10, 980–985 (2015)

    Article  Google Scholar 

  15. Z.S. Wu, Z. Liu, K. Parvez, X. Feng, K. Mullen, Adv. Mater. 27 3669–3675 (2015)

    Google Scholar 

  16. L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, R. Vajtai, P.M. Ajayan, Small 9, 2905–2910 (2013)

    Article  Google Scholar 

  17. L. Ren, G. Zhang, Z. Yan, L. Kang, H. Xu, F. Shi, Z. Lei, Z.H. Liu, ACS Appl. Mater. Interfaces 7, 28294–28302 (2015)

    Article  Google Scholar 

  18. H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, Z. Tang, Adv. Mater. 27, 1117–1123 (2015)

    Article  Google Scholar 

  19. B. Radisavljevic, A. Radenovic, J. Brivio, I.V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147–150 (2011)

    Article  Google Scholar 

  20. Y. Li, H. Wang, L. **e, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 133, 7296–7299 (2011)

    Article  Google Scholar 

  21. M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 10, 313–318 (2015)

    Article  Google Scholar 

  22. E. G. da Silveira Firmiano, A. C. Rabelo, C. J. Dalmaschio, A. N. Pinheiro, E. C. Pereira, W. H. Schreiner, E. R. Leite, Adv. Energy Mater. 4, 1301380 (2014)

    Article  Google Scholar 

  23. G.F. Ma, H. Peng, J.J. Mu, H.H. Huang, X.Z. Zhou, Z.Q. Lei, J. Power Sources 229, 72–78 (2013)

    Article  Google Scholar 

  24. K.J. Huang, L. Wang, J.Z. Zhang, L.L. Wang, Y.P. Mo, Energy 67, 234–240 (2014)

    Article  Google Scholar 

  25. H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo, H. Yuan, P. Hu, L. Zhang, C. Li, Adv. Mater. 224, 3687–3695 (2015)

    Google Scholar 

  26. Y. Ren, H. Hu, Z. Jiang, S. Deng, H. Petr, C. Jiang, Z. Li, ACS Sustain. Chem. Eng. 4, 1148–1153 (2016)

    Article  Google Scholar 

  27. H. Wang, D. Ren, Z. Zhu, S. Petr, H. Jiang, C. Li, Chem. Eng. J. 288, 179–184 (2016)

    Article  Google Scholar 

  28. Z. Deng, Y. Hu, D. Ren, S. Lin, H. Jiang, C. Li, Chem. Commun. 51, 13838–13841 (2015)

    Article  Google Scholar 

  29. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11, 5111–5116 (2011)

    Article  Google Scholar 

  30. L.B. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, Y. Cui, Proc. Natl. Acad. Sci. USA 106, 21490–21494 (2009)

    Article  Google Scholar 

  31. K. Chang, X. Hai, H. Pang, H. Zhang, L. Shi, G. Liu, H. Liu, G. Zhao, M. Li, J. Ye, Adv. Mater. (2016). doi:10.1002/adma.201603765

    Google Scholar 

  32. J.M. Soon, K.P. Loh, Electrochem. Solid-State Lett. 10, A250–A254 (2007)

    Article  Google Scholar 

  33. Y. Cheng, S. Lu, H. Zhang, C.V. Varanasi, J. Liu, Nano Lett. 12, 4206–4211 (2012)

    Article  Google Scholar 

  34. J. Qian, H. **, B. Chen, M. Lin, W. Lu, W.M. Tang, W. **ong, L.W.H. Chan, S.P. Lau, J. Yuan. Angew. Chem. Int. Ed. 54, 6800–6803 (2015)

    Article  Google Scholar 

  35. L. Yuan, X. **ao, T. Ding, J. Zhong, X. Zhang, Y. Shen, B. Hu, Y. Huang, J. Zhou, Z.L. Wang, Angew. Chem. 124, 5018–5022 (2012)

    Article  Google Scholar 

  36. L. Y. Yuan, B. Yao, B. Hu, K. F. Huo, W. Chen, J. Zhou, Energy Environ. Sci. 6, 470–476 (2013)

    Article  Google Scholar 

  37. L. B. Hu, Y. Cui, Energy Environ. Sci. 5, 6423–6435 (2013)

    Article  Google Scholar 

  38. H. **, L. Zhou, C.L. Mak, H. Huang, W.M. Tang, H.L.W. Chan, Nano. Energy 11, 662–670 (2015)

    Article  Google Scholar 

  39. H. **, L. Zhou, C. Leung Mak, H. Huang, W. Man Tang, H.L. Wa Chan, J. Mater. Chem. A 3, 15633–15641 (2015)

    Article  Google Scholar 

  40. H. **, J. Qian, L. Zhou, J. Yuan, H. Huang, Y. Wang, W. Man Tang, H.L. Wa Chan, ACS Appl. Mater. Interfaces 8, 9088–9096 (2016)

    Article  Google Scholar 

  41. Z. Zhang, X. Chen, P. Chen, G. Guan, L. Qiu, H. Lin, Z. Yang, W. Bai, Y. Luo, H. Peng, Adv. Mater. 26, 466–470 (2014)

    Article  Google Scholar 

  42. Y. Huang, M. Zhong, Y. Huang, M. Zhu, Z. Pei, Z. Wang, Q. Xue, X. **e, C. Zhi, Nat. Common. 6, 10310 (2015)

    Article  Google Scholar 

  43. Y. Huang, J. Tao, W. Meng, M. Zhu, Y. Huang, Y. Fu, Y. Gao, C. Zhi, Nano. Energy 11, 518–525 (2015)

    Article  Google Scholar 

  44. Y. Huang, S.V. Kershaw, Z. Wang, Z. Pei, J. Li, Y. Huang, H. Li, M. Zhu, A.L. Rogach, C. Zhi, Small 12, 3393–3399 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Project of Natural Science Foundation of Hubei Province: 2013CFA057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Lv.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1666 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Lv, H., Liu, H. et al. Two dimensional MoS2/CNT hybrid ink for paper-based capacitive energy storage. J Mater Sci: Mater Electron 28, 8452–8459 (2017). https://doi.org/10.1007/s10854-017-6564-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6564-8

Keywords

Navigation