Log in

Bonding copper ribbons on crystalline photovoltaic modules using various lead-free solders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The requirement for environmentally friendly technology has led to considerable efforts to develop photovoltaic (PV) modules. The copper (Cu) ribbon interconnects of PV modules require alternative bonding materials to replace the current solder that contains lead. Several candidate lead-free solder materials have been developed that are inexpensive and reliable. In this study, we evaluate Cu ribbon interconnection bonding with Sn–0.7Cu and Sn–48Bi–2Ag solder materials to address their feasibility for use in PV modules by investigating material degradation during thermal cycling. After thermal cycling, in the Sn–0.7Cu solder, considerable intermetallic compound (IMC) growth occurred at both interfaces, while Bi-rich grains coarsened with IMC growth in Sn–48Bi–2Ag solder. However, the degradation of the electrical performance of the PV modules was similar for those containing both solder materials. Cracks that appeared at the interface propagated from the fractures of the Ag3Sn IMC layers. This suggests that preventing IMC growth at the interface between the Cu ribbon and Ag sintered electrode is important to improve the reliability of interconnects in PV modules. The use of Pb-free solder in PV modules opens up a novel opportunity to realize high reliability at low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.N. Tiwari, R.K. Mishra, S.C. Solanki, Appl. Energy 88, 2287 (2011)

    Article  Google Scholar 

  2. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. Res. Appl. 23, 1 (2015)

    Article  Google Scholar 

  3. V. Sharma, S.S. Chandel, Renew. Sustain Energy Rev. 27, 753 (2013)

    Article  Google Scholar 

  4. A. Ndiaye, A. Charki, A. Kobi, C.M.F. Kébé, P.A. Ndiaye, V. Sambou, Sol. Energy 96, 140 (2013)

    Article  Google Scholar 

  5. M.M. Aman, K.H. Solangi, M.S. Hossain, A. Badarudin, G.B. Jasmon, H. Mokhlis, A.H.A. Bakar, S.N. Kazi, Renew. Sustain Energy Rev. 41, 1190 (2015)

    Article  Google Scholar 

  6. W. Zhang, W. Ruythooren, J. Electron. Mater. 37, 1095 (2008)

    Article  Google Scholar 

  7. J.-S. Jeong, N. Park, C. Han, Microelectron. Reliab. 52, 2326 (2012)

    Article  Google Scholar 

  8. U. Itoha, M. Yoshidaa, H. Tokuhisaa, K. Takeuchib, Y. Takemurab, Energy Procedia 55, 464 (2014)

    Article  Google Scholar 

  9. N. Park, J.-S. Jeong, C. Han, Microelectron. Reliab. 54, 1562 (2014)

    Article  Google Scholar 

  10. P. Schmitt, P. Kaiser, C. Savio, M. Tranitz, U. Eitner, Energy Procedia 27, 664 (2012)

    Article  Google Scholar 

  11. H.-H. Hsieh, F.-M. Lin, F.-Y. Yeh, M.-H. Lin, Sol. Energy Mater. Sol. Cells 93, 864 (2009)

    Article  Google Scholar 

  12. T.L. Yang, K.Y. Huang, S. Yang, H.H. Hsieh, C.R. Kao, Sol. Energy Mater. Sol. Cells 123, 139 (2014)

    Article  Google Scholar 

  13. IEC 61215, Crystalline silicon terrestrial photovoltaic (PV) modules—Design qualification and type approval (2005)

  14. IEC 60904-1, Photovoltaic devices—Part 1: Measurement of photovoltaic current–voltage characteristics (2006)

  15. C.R. Kao, Mater. Sci. Eng. A 238, 196 (1997)

    Article  Google Scholar 

  16. R.W. Wu, L.C. Tsao, S.Y. Chang, C.C. Jain, R.S. Chen, J. Mater. Sci. Mater. Electron. 22, 1181 (2011)

    Article  Google Scholar 

  17. J.F. Li, P.A. Agyakwa, C.M. Johnson, Acta Mater. 58, 3429 (2010)

    Article  Google Scholar 

  18. J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, D.A. Hutt, Acta Mater. 54, 2907 (2006)

    Article  Google Scholar 

  19. H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)

    Article  Google Scholar 

  20. W.R. Osório, L.C. Peixoto, L.R. Garcia, N. Mangelinck-Noël, A. Garcia, J. Alloys Compd. 572, 97 (2013)

    Article  Google Scholar 

  21. K.-J. Chen, F.-Y. Hung, T.-S. Lui, L.-H. Chen, D.-W. Qiu, T.-L. Chou, Microelectron. Eng. 116, 33 (2014)

    Article  Google Scholar 

  22. T. Siewert, S. Lin, D.R. Smith, J.C. Madeni, Properties of lead-free solders, http://www.metallurgy.nist.gov/solder/NIST_LeadfreeSolder_v4.pdf. Accessed 1 June 2015

Download references

Acknowledgments

The authors are grateful for the support from the New & Renewable Energy Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korea Government Ministry of Knowledge Economy (20133030011110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Sik Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, C., Kim, A., Kim, J. et al. Bonding copper ribbons on crystalline photovoltaic modules using various lead-free solders. J Mater Sci: Mater Electron 26, 9721–9726 (2015). https://doi.org/10.1007/s10854-015-3640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3640-9

Keywords

Navigation