Log in

Study on terbium doped lanthanum oxybromide luminescent nanoribbons and nanofibers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Terbium doped lanthanum oxybromide (LaOBr:Tb3+) nanoribbons and nanofibers were successfully synthesized by double-crucible bromination of the electrospinning-derived La2O3:Tb3+ nanoribbons and nanofibers using NH4Br powders as the bromine source. The structure and morphology of the samples were investigated by X-ray diffractometry and scanning electron microscopy. The results indicated that LaOBr:Tb3+ nanoribbons and nanofibers were pure tetragonal in structure with space group of P4/nmm. The width of LaOBr:Tb3+ nanoribbons were 2.33 ± 0.33 μm and the diameter of LaOBr:Tb3+ nanofibers was 90.08 ± 15.19 nm. The photoluminescent properties of LaOBr:Tb3+ nanoribbons and nanofibers were also characterized systematically. Under the excitation of 253-nm ultraviolet light, LaOBr:Tb3+ nanostructures exhibit the green emission of predominant peak at 543 nm. The optimum do** molar concentration of Tb3+ ions in the LaOBr:Tb3+ nanoribbons is 5 %. Interestingly, the luminescence intensity of LaOBr:5 %Tb3+ nanofibers is obviously greater than that of LaOBr:5 %Tb3+ nanoribbons under the same measuring conditions. Moreover, the luminescence colors of LaOBr:Tb3+ nanostructures are located in the green region in Commission Internationale de L’Eclairage chromaticity coordinates diagram. The mechanism of double-crucible bromination method was also proposed. This new bromination technique not only can inherit the morphology of rare earth oxides precursor, but also can be used to fabricate pure-phase rare earth oxybromide at low temperature compared with conventional high temperature solid state bromination reaction method. LaOBr:Tb3+ nanostructures are promising nanomaterials for applications in the fields of light display systems and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Li, M. Yu, Z.Y. Hou, G.G. Hai, P.A. Ma, W.X. Wang, Z.Y. Cheng, J. Lin, J. Solid State Chem. 184, 141–148 (2011)

    Article  Google Scholar 

  2. Z.Y. Hou, L.L. Wang, H.Z. Lian, R.T. Chai, C.M. Zhang, Z.Y. Cheng, J. Lin, J. Solid State Chem. 182, 698–708 (2009)

    Article  Google Scholar 

  3. X. Li, M. Yu, Z.Y. Hou, W.X. Wang, G.G. Li, Z.Y. Cheng, R.T. Chai, J. Lin, J. Colloid Interface Sci. 349, 166–172 (2010)

    Article  Google Scholar 

  4. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, J. Xu, Opt. Mater. 35, 526–530 (2013)

    Article  Google Scholar 

  5. L.X. Song, P.F. Du, J. **ong, X.N. Fan, Y.X. Jiao, J. Lumin. 132, 171–174 (2012)

    Article  Google Scholar 

  6. H.W. Song, L.X. Yu, S.Z. Lu, Z.X. Liu, L.M. Yang, T. Wang, Opt. Lett. 30, 483–485 (2005)

    Article  Google Scholar 

  7. X. Zhang, C.L. Shao, Z.Y. Zhang, J.H. Li, P. Zhang, M.Y. Zhang, J.B. Mu, Z.C. Guo, P.P. Liang, Y.C. Liu, Appl. Mater. Interfaces 4, 785–7901 (2012)

    Article  Google Scholar 

  8. M.S. Islam, J. Phys. Chem. Solids 51, 367–372 (1990)

    Article  Google Scholar 

  9. J. Hölsä, M. Lastusaari, J. Niittykoski, R.S. Puche, Phys. Chem. Chem. Phys. 4, 3091–3097 (2002)

    Article  Google Scholar 

  10. K.R. Reddy, V. Aruna, T. Balaji, K. Annapurna, S. Buddhudu, Mater. Chem. Phys. 52, 157–160 (1998)

    Article  Google Scholar 

  11. S.W. Kim, K. Jyoko, T. Masui, N. Imanaka, Materials 3, 2506–2515 (2010)

    Article  Google Scholar 

  12. J.H. Yang, J. Gong, H.G. Fan, L.L. Yang, J. Mater. Sci. 40, 3725–3728 (2005)

    Article  Google Scholar 

  13. J. Lee, Q.W. Zhang, F. Saito, J. Solid State Chem. 160, 469–473 (2001)

    Article  Google Scholar 

  14. J.R. Niu, J.G. Deng, G.Z. Wang, H.X. Dai, H. He, W.G. Qiu, X.H. Zi, J. Chin. Rare Earth Soc. 24, 46–49 (2006)

    Google Scholar 

  15. Y.H. Hou, G. Chang, W.Z. Weng, W.S. **a, H.L. Wan, Chin. J. Catal. 32, 1531–1536 (2011)

    Google Scholar 

  16. Z Mazurak, A Garcia, C Fouassier, J. Phys.:Conds. Matter. 6, 2031-2037 (1994)

    Google Scholar 

  17. N. Imanaka, Y. Kato, J. Mater. Sci. 40, 6495–6498 (2005)

    Article  Google Scholar 

  18. K. Rajamohan Reddy, V. Aruna, T. Balaji, K. Annapuma, S. Buddhudu, Mater. Chem. Phys. 52, 157–160 (1998)

    Article  Google Scholar 

  19. D.Y. Wang, W.P. Zhang, M. Yin, Opt. Mater. 27, 605–608 (2004)

    Article  Google Scholar 

  20. C.R. Ronda, H. Bechtel, U. Kynast, T. Welker, J. Appl. Phys. 75, 4636–4641 (1994)

    Article  Google Scholar 

  21. Q.Z. Cui, X.T. Dong, J.X. Wang, M. Li, J. Rare Earth 26, 664–669 (2008)

    Article  Google Scholar 

  22. D. Li, Y.L. Wang, Y.N. **a, Nano Lett. 3, 1167–1171 (2003)

    Article  Google Scholar 

  23. J.X. Wang, X.T. Dong, Q.Z. Cui, G.X. Liu, W.S. Yu, J. Nanosci. Nanotechnol. 11, 2514–2519 (2011)

    Article  Google Scholar 

  24. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, J. Mater. Chem. 22, 14438–14442 (2012)

    Article  Google Scholar 

  25. D. Li, Y.N. **a, Adv. Mater. 16, 1151–1170 (2004)

    Article  Google Scholar 

  26. A. Greiner, J.H. Wendorff, Angew. Chem. Int. Ed. 46, 5670–5703 (2007)

    Article  Google Scholar 

  27. J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C. Beck Tan, Polymer 42, 261–272 (2001)

    Article  Google Scholar 

  28. D. Li, Y.N. **a, Nano Lett. 4, 933–938 (2004)

    Article  Google Scholar 

  29. G.C. Rutledge, S.V. Fridrikh, Adv. Drug Deliv. Rev. 59, 1384–1391 (2007)

    Article  Google Scholar 

  30. W.W. Ma, X.T. Dong, J.X. Wang, W.S. Yu, Guixia Liu. J. Mater. Sci. 48, 2557–2565 (2013)

    Article  Google Scholar 

  31. X.T. Dong, L. Lui, J.X. Wang, G.X. Liu, Chem. J. Chin. U. 31, 20–25 (2010)

    Google Scholar 

  32. G.Q. Gai, L.Y. Wang, X.T. Dong, C.M. Zheng, W.S. Yu, J.X. Wang, X.F. **ao, J. Nanopart. Res. 15, 1539–1547 (2013)

    Article  Google Scholar 

  33. D. Li, X.T. Dong, W.S. Yu, J.X. Wang, G. Liu, J. Nanopart. Res. 15, 1704–1714 (2013)

    Article  Google Scholar 

  34. G. Blasse, Phys. Lett. 28, 444–445 (1968)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402, 20060504), the Science and Technology Research Project of the Education Department of Jilin Province during the eleventh five-year plan period (Under Grant No. 2010JYT01), Key Research Project of Science and Technology of Ministry of Education of China (Grant No. 207026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **angting Dong or **xian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Dong, X., Wang, J. et al. Study on terbium doped lanthanum oxybromide luminescent nanoribbons and nanofibers. J Mater Sci: Mater Electron 25, 1657–1663 (2014). https://doi.org/10.1007/s10854-014-1780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1780-y

Keywords

Navigation