Log in

In-situ tensile deformation of austenitic stainless steels with various grain sizes during synchrotron and neutron diffraction

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we conducted in-situ tensile deformation tests using synchrotron X-ray and neutron diffraction techniques on Nb-bearing AISI 201 austenitic stainless steel specimens with varying grain sizes, including ultrafine (UFG, 0.28 μm), fine (FG, 1.75 μm), and coarse (CG, 110 μm) grains. The primary objective was to investigate the effect of grain size on the evolution of lattice strains and deformation mechanisms. Our findings reveal that grain size significantly impacts the evolution of lattice strains, peak broadening, and the distribution of load between the austenite and martensite phases. Notably, the average lattice strain and peak broadening were found to be higher in the CG specimen compared to the UFG and FG counterparts. While the lattice strains in the UFG and FG steels are all compressive, a tensile manner can be seen for the CG steel as deformation proceeds. The strain-induced martensite transformation kinetics for the reversion-annealed UFG and FG steels was higher than that of the solution-annealed CG one. A soft behavior from reflection (200) was found compared to other reflections in all UFG, FG, and CG specimens, showing anisotropic elastic properties. The analysis of lattice strain and peak broadening evolutions indicated that dislocation slip predominantly governs the deformation mechanism in the CG steel, while strain-induced martensitic transformation and twinning are more prominent in the UFG and FG specimens.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Data availability

Data will be made available on request.

References

  1. Humphreys FJ, Prangnell PhB, Priestner R (2001) Fine-grained alloys by thermomechanical processing. Curr Opin Sol Stat Mater Sci 5:15–21

    Article  CAS  Google Scholar 

  2. Eskandari M, Kermanpur A, Najafizadeh A (2009) Formation of nanocrystalline structure in 301 stainless steel produced by martensite treatment. Metal Mater Trans A 40:2241–2249

    Article  Google Scholar 

  3. Rezaee A, Kermanpur A, Najafizadeh A, Moallemi M (2011) Production of nano/ultrafine grained AISI 201L stainless steel through advanced thermo-mechanical treatment. Mater Sci Eng A 528:5025–5029

    Article  CAS  Google Scholar 

  4. Behjati P, Kermanpur A, Najafizadeh A, Samaei Baghbadorani H, Jung J-G, Lee Y-K (2014) Enhanced mechanical properties in a high-manganese austenitic steel through formation of nano grains, nanotwinned austenite grains, nano carbides and TRIP. Mater Sci Eng A 610:273–278

    Article  CAS  Google Scholar 

  5. Hosseini SM, Najafizadeh A, Kermanpur A (2011) Producing the nano/ultrafine grained low carbon steel by martensite process using plane strain compression. J Mater Proc Technol 211:230–236

    Article  CAS  Google Scholar 

  6. Hosseini SM, Alishahi M, Najafizadeh A, Kermanpur A (2012) The improvement of ductility in nano/ultrafine grained low carbon steels via high temperature short time annealing. Mater Lett 74:206–208

    Article  CAS  Google Scholar 

  7. Zakerinia H, Kermanpur A, Najafizadeh A (2011) The effect of bainite in producing nano/ultrafine grained steel by the martensite treatment. Mater Sci Eng A 528:3562–3567

    Article  Google Scholar 

  8. Hamzeh M, Kermanpur A, Najafizadeh A (2014) Fabrication of the ultrafine-grained ferrite with good resistance to grain growth and evaluation of its tensile properties. Mater Sci Eng A 593:24–30

    Article  CAS  Google Scholar 

  9. Mazaheri Y, Kermanpur A, Najafizadeh A, Saeidi N (2014) Effects of initial microstructure and thermomechanical processing parameters on microstructures and mechanical properties of ultrafine grained dual phase. Mater Sci Eng A 612:54–62

    Article  CAS  Google Scholar 

  10. Zhu YT, Liao XZ, Wu XL, Narayan J (2013) Grain size effect on deformation twinning and detwinning. J Mater Sci 48:4467–4475

    Article  CAS  Google Scholar 

  11. Deng X, Lei C, Wang Z (2020) Deformation mechanism and mechanical properties of nano/ultrafine grained and heterogeneous Fe–17Cr–6Ni austenitic steel. In: TMS 2020 149th Annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Springer, pp 2105–2112

  12. Figueiredo RB, Langdon TG (2021) Deformation mechanisms in ultrafine-grained metals with an emphasis on the Hall-Petch relationship and strain rate sensitivity. J Mater Res Technol 14:137–159

    Article  CAS  Google Scholar 

  13. Van Swygenhoven H, Schmitt B, Derlet PM, Van Petegem S, Cervellino A, Budrovic Z, Brandstetter S, Bollhalder A, Schild M (2006) Following peak profiles during elastic and plastic deformation: a synchrotron-based technique. Rev Sci Inst 77:1–10

    Google Scholar 

  14. Van Swygenhoven H, Van Petegem S (2013) In-situ mechanical testing during X-ray diffraction. Mater Charac 78:47–59

    Article  Google Scholar 

  15. Wilson DV, Konnan YA (1964) Work hardening in a steel containing a coarse dispersion of cementite particles. Acta Metall 12:617–628

    Article  CAS  Google Scholar 

  16. Budrovic Z, Van Swygenhoven H, Derlet PM, Van Petegem S, Schmitt B (2004) Plastic deformation with reversible peak broadening in nanocrystalline nickel. Science 304:273–276

    Article  CAS  PubMed  Google Scholar 

  17. Budrovic Z, Van Petegem S, Derlet PM, Schmitt B, Van Swygenhoven H, Schafler E, Zehetbauer M (2005) Footprints of deformation mechanisms during in situ x-ray diffraction: nanocrystalline and ultrafine grained Ni. Appl Phys Lett 86:1–3

    Article  Google Scholar 

  18. Goudeau P, Villain P, Girardeau T, Renault P-O, Badawi K-F (2004) Elastic constants investigation by X-ray diffraction of in situ deformed metallic multi-layers. Scripta Mater 50:723–727

    Article  CAS  Google Scholar 

  19. Fan GJ, Fu LF, Choo H, Liaw PK, Browning ND (2006) Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys. Acta Mater 54:4781–4792

    Article  CAS  Google Scholar 

  20. Brandstetter S, Van Swygenhoven H, Van Petegem S, Schmitt B, Maaß R, Derlet PM (2006) From Micro- to Macroplasticity. Adv Mater 18:1545–1548

    Article  CAS  Google Scholar 

  21. Schloth P, Weisser MA, Van Swygenhoven H, Van Petegem S, Susila P, Subramanya Sarma V, Murty BS, Lauterbach S, Heilmaier M (2012) Two strain-hardening mechanisms in nanocrystalline austenitic steel: an in situ synchrotron X-ray diffraction study. Scripta Mater 66:690–693

    Article  CAS  Google Scholar 

  22. Sun B, Shen T (2020) Probing the deformation mechanisms of nanocrystalline silver by in-situ tension and synchrotron X-ray diffraction. Metals 10:1–13

    Article  CAS  Google Scholar 

  23. Stuhr U, Spitzer H, Egger J, Hofer A, Rasmussen P, Graf D, Bollhalder A, Schild M, Bauer G, Wagner W (2005) Time-of-flight diffraction with multiple frame overlap Part II: the strain scanner POLDI at PSI. Nucl Instrum Meth Phys Res Sect A Accel Spect Detect Assoc Equip 545:330–338

    Article  CAS  Google Scholar 

  24. Van Petegem S, Li L, Anderson PM, Van Swygenhoven H (2013) Deformation mechanisms in nanocrystalline metals: Insights from in-situ diffraction and crystal plasticity modeling. Thin Solid Films 530:20–24

    Article  Google Scholar 

  25. Dickson MJ (1969) The significance of texture parameters in phase analysis by X-ray diffraction. J Appl Cryst 2:176–180

    Article  CAS  Google Scholar 

  26. Talonen J, Nenonen P, Pape G, Hanninen H (2005) Effect of strain rate on the strain-induced martensite transformation and mechanical properties of austenitic stainless steels. Metall Mater Trans A 36A:421–432

    Article  CAS  Google Scholar 

  27. Tsakiris V, Edmonds DV (1999) Martensite and deformation twinning in austenitic steels. Mater Sci Eng A 273–275:430–436

    Article  Google Scholar 

  28. Kisko A, Misra RDK, Talonen J, Karjalainen LP (2013) The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel. Mater Sci Eng A 578:408–416

    Article  CAS  Google Scholar 

  29. Pang JWL, Holden TM, Wright JS, Mason TE (2000) The generation of intergranular strains in 309H stainless steel under uniaxial loading. Acta Mater 48:1131–1140

    Article  CAS  Google Scholar 

  30. Clausen B, Lorentzen T, Leffers T (1998) Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses. Acta Mater 46:3087–3098

    Article  CAS  Google Scholar 

  31. Pang JWL, Rogge RB, Donaberger RL (2006) Effects of grain size on intergranular strain evolution in Ni. Mater Sci Eng A 437:21–25

    Article  Google Scholar 

  32. Clausen B, Lorentzen T (1997) Experimental evaluation of a polycrystal deformation modeling scheme using neutron diffraction measurements. Metall Mater Trans A 28:2537–2541

    Article  Google Scholar 

  33. Clausen B, Lorentzen T, Bourke MAM, Daymond MR (1999) Lattice strain evolution during uniaxial tensile loading of stainless steel. Mater Sci Eng A259:17–24

    Article  CAS  Google Scholar 

  34. Cheng S, Stoica AD, Wang X-L, Ren Y, Almer J, Horton JA, Liu CT, Clausen B, Brown DW, Liaw PK, Zuo L (2009) Deformation crossover: from nano- to mesoscale. Phy Rev Lett 103:1–4

    Article  Google Scholar 

  35. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AK sincerely acknowledges the Isfahan University of Technology in Iran for financial support, the Paul Scherrer Institute in Switzerland for providing the Synchrotron and Neutron diffraction facilities, and Mr. H. Samaei for preparing stainless steel specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Kermanpur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Nima Haghdadi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kermanpur, A., Van Petegem, S. & Casati, N. In-situ tensile deformation of austenitic stainless steels with various grain sizes during synchrotron and neutron diffraction. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09988-5

Navigation