Log in

A facile injectable and self-healing carbon dot/oxidative polysaccharide hydrogel with sustained release capability and potent antibacterial activity

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multi-functional hydrogels possess significant potential for use in clinical medical treatments. In this study, we synthesized a polysaccharide hydrogel containing carbon dots (CDs) for the purpose of creating antibacterial dressing candidates. Initially, antibacterial carbon dots (CDBAC) were derived from the calcination of benzalkonium chloride (BAC). CDBAC exhibits rapid interaction with bacterial cell membranes via electrostatic forces, while generating a high levels of reactive oxygen species (ROS) that ultimately lead to membrane disruption. Furthermore, CDBAC has been shown to impede the respiratory function of bacterial mitochondria. Through a combination of various antibacterial mechanisms, CDBAC demonstrates potent bactericidal properties and effectively prevents the development of drug resistance in S. aureus and E. coli. Subsequently, a novel antibacterial hydrogel dressing incorporating CDBAC (referred to as CDBAC-hydrogel) has been synthesized as a potential treatment for wound healing. The gelation process of this hydrogel is attributed to the formation of Schiff-base bonds between the amidogen group of carboxymethyl chitosan (CMCS) and the formyl group of oxidized dextran (ODex). The prepared CDBAC-hydrogel demonstrated shear-thinning, self-healing, and injectable properties, as well as the ability to sustainably release CDBAC in a mildly acidic bacterial environment, exhibit potent antibacterial activity, and display excellent biocompatibility. This research offers a novel option for antibacterial dressings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Liang Y, He J, Guo B (2021) Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15:12687–12722. https://doi.org/10.1021/acsnano.1c04206

    Article  CAS  PubMed  Google Scholar 

  2. Farazin A, Shirazi FA, Shafiei M (2023) Natural biomarocmolecule-based antimicrobial hydrogel for rapid wound healing: a review. Int J Biol Macromol 244:125454. https://doi.org/10.1016/j.ijbiomac.2023.125454

    Article  CAS  PubMed  Google Scholar 

  3. Op’t Veld RC, Walboomers XF, Jansen JA, Wagener FA (2020) Design considerations for hydrogel wound dressings: strategic and molecular advances. Tissue Eng Part B 26:230–248. https://doi.org/10.1089/ten.teb.2019.0281

    Article  CAS  Google Scholar 

  4. Gao Y, Li Z, Huang J, Zhao M, Wu J (2020) In situ formation of injectable hydrogels for chronic wound healing. J Mater Chem B 8:8768–8780. https://doi.org/10.1039/d0tb01074j

    Article  CAS  PubMed  Google Scholar 

  5. Lokhande G, Carrow JK, Thakur T, Xavier JR, Parani M, Bayless KJ, Gaharwar AK (2018) Nanoengineered injectable hydrogels for wound healing application. Acta Biomater 70:35–47. https://doi.org/10.1016/j.actbio.2018.01.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao X, Liang Y, Huang Y, He J, Han Y, Guo B (2020) Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv Funct Mater 30:1910748. https://doi.org/10.1002/adfm.201910748

    Article  CAS  Google Scholar 

  7. Zhai L, Narkar A, Ahn K (2020) Self-healing polymers with nanomaterials and nanostructures. Nano Today 30:100826. https://doi.org/10.1016/j.nantod.2019.100826

    Article  CAS  Google Scholar 

  8. Tang Y, Xu H, Wang X, Dong S, Guo L, Zhang S, Yan X, Liu C, Jiang X, Kan M, Wu S, Zhang J, Xu C (2023) Advances in preparation and application of antibacterial hydrogels. J Nanobiotechnol 21:300. https://doi.org/10.1186/s12951-023-02025-8

    Article  Google Scholar 

  9. Liu Y, Li QQ, Zhang H, Yu SP, Zhang L, Yang YZ (2020) Research progress on the use of micro/nano carbon materials for antibacterial dressings. New Carbon Mater 35:323–335. https://doi.org/10.1016/s1872-5805(20)60492-9

    Article  CAS  Google Scholar 

  10. Chen H, **ng X, Tan H, Jia Y, Zhou T, Chen Y, Ling Z, Hu X (2017) Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater Sci Eng C 70:287–295. https://doi.org/10.1016/j.msec.2016.08.086

    Article  CAS  Google Scholar 

  11. Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. Int J Pharm 457:82–91. https://doi.org/10.1016/j.ijpharm.2013.09.028

    Article  CAS  PubMed  Google Scholar 

  12. Zhang A, Liu Y, Qin D, Sun M, Wang T, Chen X (2020) Research status of self-healing hydrogel for wound management: a review. Int J Biol Macromol 164:2108–2123. https://doi.org/10.1016/j.ijbiomac.2020.08.109

    Article  CAS  PubMed  Google Scholar 

  13. Ren B, Chen X, Du S, Ma Y, Chen H, Yuan G, Li J, **ong D, Tan H, Ling Z, Chen Y, Hu X, Niu X (2018) Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering. Int J Biol Macromol 118:1257–1266. https://doi.org/10.1016/j.ijbiomac.2018.06.200

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharyya SK, Dule M, Paul R, Dash J, Anas M, Mandal TK, Das P, Das NC, Banerjee S (2020) Carbon dot cross-linked gelatin nanocomposite hydrogel for pH-sensing and pH-responsive drug delivery. ACS Biomater Sci Eng 6:5662–5674. https://doi.org/10.1021/acsbiomaterials.0c00982

    Article  CAS  PubMed  Google Scholar 

  15. Peng X, Liu P, Pang B, Yao Y, Wang J, Zhang K (2019) Facile fabrication of pH-responsive nanoparticles from cellulose derivatives via Schiff base formation for controlled release. Carbohydr Polym 216:113–118. https://doi.org/10.1016/j.carbpol.2019.04.029

    Article  CAS  PubMed  Google Scholar 

  16. Shi H, Ma D, Wu D, Qiu X, Yang S, Wang Y, **ao L, Ji X, Zhang W, Han S, Huo P, Dong J, Kong X, Guan X, Zhang D (2024) A pH-responsive, injectable and self-healing chitosan-coumarin hydrogel based on Schiff base and hydrogen bonds. Int J Biol Macromol 255:128122. https://doi.org/10.1016/j.ijbiomac.2023.128122

    Article  CAS  PubMed  Google Scholar 

  17. Yang X, Li P, Tang W, Du S, Yu M, Lu H, Tan H, **ng X (2021) A facile injectable carbon dot/oxidative polysaccharide hydrogel with potent self-healing and high antibacterial activity. Carbohydr Polym 251:117040. https://doi.org/10.1016/j.carbpol.2020.117040

    Article  CAS  PubMed  Google Scholar 

  18. Li P, Liu S, Yang X, Du S, Tang W, Cao W, Zhou J, Gong X, **ng X (2021) Low-drug resistance carbon quantum dots decorated injectable self-healing hydrogel with potent antibiofilm property and cutaneous wound healing. Chem Eng J 403:126387. https://doi.org/10.1016/j.cej.2020.126387

    Article  CAS  Google Scholar 

  19. Hu C, Yu C, Li M, Wang X, Yang J, Zhao Z, Eychmüller A, Sun YP, Qiu J (2014) Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu (II) detection. Small 10:4926–4933. https://doi.org/10.1002/smll.201401328

    Article  CAS  PubMed  Google Scholar 

  20. Li T, Tuo Y, Hao Y, Pang J, Tian M, Rokhum SL, Zhang F, Chai F (2024) Carbon dot-based ratiometric fluorescent probe platform for visual quantitative determination of Hg2+. ACS Appl Nano Mater 7:1509–1518. https://doi.org/10.1021/acsanm.3c02927

    Article  CAS  Google Scholar 

  21. Zhang T, Wang M, Liu L, Li Z, Bi H (2024) Visible-light manipulated reversible and ultralong phosphorescence of carbon dots through dynamic cross-linking. Adv Funct Mater. https://doi.org/10.1002/adfm.202406672

    Article  Google Scholar 

  22. Li Q, Zhou M, Yang M, Yang Q, Zhang Z, Shi J (2018) Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat Commun 9:734. https://doi.org/10.1038/s41467-018-03144-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hao Y, Gan Z, Xu J, Wu X, Chu PK (2014) Poly (ethylene glycol)/carbon quantum dot composite solid films exhibiting intense and tunable blue–red emission. Appl Surf Sci 311:490–497. https://doi.org/10.1016/j.apsusc.2014.05.095

    Article  CAS  Google Scholar 

  24. Ma Y, Zhang X, Bai J, Huang K, Ren L (2019) Facile, controllable tune of blue shift or red shift of the fluorescence emission of solid-state carbon dots. Chem Eng J 374:787–792. https://doi.org/10.1016/j.cej.2019.06.016

    Article  CAS  Google Scholar 

  25. Ding H, Yu SB, Wei JS, **ong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491. https://doi.org/10.1021/acsnano.5b05406

    Article  CAS  PubMed  Google Scholar 

  26. Ghosh T, Das TK, Das P, Banerji P, Das NC (2022) Current scenario and recent advancement of doped carbon dots: a short review scientocracy update (2013–2022). Carbon Lett 32:953–977. https://doi.org/10.1007/s42823-022-00339-5

    Article  Google Scholar 

  27. Zhang H, Sun X, Wang J, Zhang Y, Dong M, Bu T, Li L, Liu Y, Wang L (2021) Multifunctional injectable hydrogel dressings for effectively accelerating wound healing: enhancing biomineralization strategy. Adv Funct Mater 31:2100093. https://doi.org/10.1002/adfm.202100093

    Article  CAS  Google Scholar 

  28. **n Y, Yuan J (2012) Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polym Chem 3:3045–3055. https://doi.org/10.1039/c2py20290e

    Article  CAS  Google Scholar 

  29. Yang Z, Huang R, Zheng B, Guo W, Li C, He W, Wei Y, Du Y, Wang H, Di Wu, Wang H (2021) Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing. Adv Sci 8:2003627. https://doi.org/10.1021/acsami.3c09615.s002

    Article  CAS  Google Scholar 

  30. Chen X, Cui H, Li H, Wang J, Fu P, Yin J, Tang S, Ke Y (2024) Functionalization of graphene oxide with amphiphilic block copolymer to enhance antibacterial activity. Colloids Surf B 234:113690. https://doi.org/10.1016/j.colsurfb.2023.113690

    Article  CAS  Google Scholar 

  31. Gottenbos B, van der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ (2002) In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials 23:1417–1423. https://doi.org/10.1016/S0142-9612(01)00263-0

    Article  CAS  PubMed  Google Scholar 

  32. Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X (2018) Antibacterial hydrogels. Adv Sci 5:1700527. https://doi.org/10.1002/advs.201700527

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Anhui Provincial Natural Science Foundation (No. 2308085QC74, 2108085QE199), Natural Science Research Project of Anhui Educational Committee (No. 2023AH051862, 2022AH051653), Anhui Province Applied Peak Cultivation Discipline (XK-XJGF005) and Research Activity Funding Project for Postdoctoral Researchers in Anhui Province (No. 2023B709, 2021B500), the College Students Innovative Entrepreneurial Training Plan Program (No. S202210879080, 202310879055), the Anhui Science and Technology University Talent Introduction Project (HCYJ202110).

Author information

Authors and Affiliations

Authors

Contributions

Peili Li was contributed investigation, writing—original draft, funding acquisition, data curation, and formal analysis. Zhiyue Wang, Chen Cheng, Meizhe Yu, Junhua Chen, Yunhe Xu, and Da Zhang were involved in investigation and formal analysis. **ang Ke and Zirong Li were performed supervision, funding acquisition, conceptualization, and methodology.

Corresponding authors

Correspondence to Peili Li, **ang Ke or Zirong Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Subha Narayan Rath.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1417 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Wang, Z., Yu, M. et al. A facile injectable and self-healing carbon dot/oxidative polysaccharide hydrogel with sustained release capability and potent antibacterial activity. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09977-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09977-8

Navigation