Log in

Precipitate-free zones formation at grain boundaries in γ/γ′ Ni-based superalloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Formation and growth of secondary γ′ precipitate-free zones (PFZ) in the vicinity of grain boundaries in five Ni-based superalloys have been investigated for different heat treatment times and temperatures. A special focus has been placed on a high carbon containing version of the AD730™ alloy. While the formation of PFZ is induced by the precipitation of Ti-rich secondary carbides during aging in Nimonic PE16, it has been shown in the present study that PFZ mainly form during close-to-γ′-solvus heat treatments and are associated with the nucleation of intergranular γ′ precipitates in the studied alloys. Since these precipitates have chemical compositions similar to intragranular secondary γ′ particles, depletion of precipitate-forming elements leads to the dissolution of intragranular secondary γ′ precipitates near grain boundaries and finally to the formation of PFZ. PFZ width evolutions have been described using a parabolic model, and their kinetics obey an Arrhenius-type law indicating a diffusion-controlled process. Thanks to chemical composition analyzes in and near the PFZ, it is shown that both titanium and niobium diffusion, in volume and through the grain boundaries, could be controlling the PFZ formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data and code availability

Data (SEM/TEM micrographs and data tables) and codes (post-treatment files) are available upon request.

References

  1. Reed RC (2006) The superalloys fundamentals. Cambridge University Press

    Book  Google Scholar 

  2. Tabaoda Michel H, Bridier F, Cormier J, et al (2016) Mechanical properties of cast & wrought hybrid disks. In: Proceedings of the 13th international symposium on superalloys. The minerals, metals & materials society, pp 539–548

  3. Mangen W, Nembach E (1989) The effect of grain size on the yield strength of the γ′-hardened superalloy NIMONIC PE16. Acta Metall 37:1451–1463. https://doi.org/10.1016/0001-6160(89)90177-6

    Article  CAS  Google Scholar 

  4. Maldonado R, Nembach E (1997) The formation of precipitate free zones and the growth of grain boundary carbides in the nickel-base superalloy NIMONIC PE16. Acta Mater 45:213–224. https://doi.org/10.1016/S1359-6454(96)00139-5

    Article  CAS  Google Scholar 

  5. Krol T, Baither D, Nembach E (2004) The formation of precipitate free zones along grain boundaries in a superalloy and the ensuing effects on its plastic deformation. Acta Mater 52:2095–2108. https://doi.org/10.1016/j.actamat.2004.01.011

    Article  CAS  Google Scholar 

  6. Laurence A (2016) Impact du sur-vieillissement métallurgique sur le comportement et la durabilité du nouveau superalliage pour disque de turbine René 65. PhD Thesis, Ecole Nationale Supérieure de Mécanique et d’Aérotechnique. https://theses.hal.science/tel-01371652

  7. Mrozowski N (2021) Mécanismes de propagation de fissure dans un superalliage base nickel polycristallin en régime d’interaction fatigue-fluage-oxydation-vieillissement métallurgique. PhD Thesis, Ecole Nationale Supérieure de Mécanique et d’Aérotechnique. https://theses.hal.science/tel-03092324

  8. Billot T (2010) Comportement et endommagement en fatigue et fatigue - fluage à haute température de différents états microstructuraux du superalliage base-nickel Udimet 720. PhD Thesis, Ecole Nationale Supérieure de Mécanique et d’Aérotechnique. https://theses.hal.science/tel-00545922

  9. Krol T, Baither D, Nembach E (2003) Quantification of the detrimental effects of precipitate free zones on the yield strength of a superalloy. Scripta Mater 48:1189–1194. https://doi.org/10.1016/S1359-6462(02)00566-3

    Article  CAS  Google Scholar 

  10. Krol T, Baither D, Nembach E (2004) Softening of the superalloy NIMONIC PE16 by precipitate free zones along grain boundaries. Mater Sci Eng, A 387–389:214–217. https://doi.org/10.1016/j.msea.2004.01.075

    Article  CAS  Google Scholar 

  11. Baither D, Krol T, Nembach E (2003) In-situ transmission electron microscopy study of dislocation processes at precipitate-free zones in a γ ′-strengthened superalloy. Phil Mag 83:4011–4029. https://doi.org/10.1080/14786430310001603445

    Article  CAS  Google Scholar 

  12. Baither D, Krol T, Nembach E (2004) Dislocation processes in precipitate-free zones in NIMONIC PE16 studied by in situ transmission electron microscopy. Mater Sci Eng, A 387–389:163–166. https://doi.org/10.1016/j.msea.2004.01.072

    Article  CAS  Google Scholar 

  13. Larrouy B (2014) Mécanismes de déformation et d’amorçage de fissures dans l’alliage UdimetTM 720Li en relation avec les paramètres microstructuraux. PhD Thesis, Ecole Nationale Supérieure de Mécanique et d’Aérotechnique. https://theses.hal.science/tel-01129092

  14. Devaux A, Li W, Crozet C, Lardon JM (2016) Evaluation of AD730TM for high temperature fastener applications. In: Superalloys 2016: proceedings of the 13th international symposium on superalloys. https://doi.org/10.1007/978-3-030-51834-9

  15. Rosenbaum HS, Turnbull D (1958) On the precipitation of silicon out of a supersaturated aluminum-silicon solid solution. Acta Metall 6:653–659. https://doi.org/10.1016/0001-6160(58)90160-3

    Article  CAS  Google Scholar 

  16. Rosenbaum HS, Turnbull D (1959) Metallographic Investigation of precipitation of dilicon from aluminum. Acta Metall 7:664–674

    Article  CAS  Google Scholar 

  17. Embury JD, Nicholson RB (1965) The nucleation of precipitates: the system Al–Zn–Mg. Acta Metall 13:403–417. https://doi.org/10.1016/0001-6160(65)90067-2

    Article  CAS  Google Scholar 

  18. Ryum N (1968) The influence of a precipitate-free zone on the mechanical properties of an Al–Mg–Zn alloy. Acta Metall 16:327–332. https://doi.org/10.1016/0001-6160(68)90018-7

    Article  CAS  Google Scholar 

  19. Unwin PNT, Lorimer GH, Nicholson RB (1969) The origin of the grain boundary precipitate free zone. Acta Metall 17:1363–1377. https://doi.org/10.1016/0001-6160(69)90154-0

    Article  CAS  Google Scholar 

  20. Abe M, Asano K, Fujiwara A (1973) Influence of the precipitate-free zone width on the tensile properties of an Al-6 Wt pct Zn-1.2 Wt pct Mg alloy. MT 4:1499–1505. https://doi.org/10.1007/BF02668000

    Article  CAS  Google Scholar 

  21. Chang S, Morral JE (1975) The influence of the quenching rate on precipitate-free-zones in an Al–Zn–Mg alloy. Acta Metall 23:685–689. https://doi.org/10.1016/0001-6160(75)90050-4

    Article  CAS  Google Scholar 

  22. Squires RL, Weiner RT, Phillips M (1963) Grain-boundary denuded zones in a magnesium 1/2 wt% zirconium alloy. J Nucl Mater 8:77–80. https://doi.org/10.1016/0022-3115(63)90010-2

    Article  CAS  Google Scholar 

  23. Harris JE, Jones RB (1963) Directional diffusion in magnesium alloys. J Nucl Mater 10:360–362. https://doi.org/10.1016/0022-3115(63)90187-9

    Article  CAS  Google Scholar 

  24. Tien JK, Gamble RP (1971) The influence of applied stress and stress sense on grain boundary precipitate morphology in a nickel-base superalloy during creep. MT 2:1663–1667. https://doi.org/10.1007/BF02913891

    Article  CAS  Google Scholar 

  25. Gibbons TB (1972) The influence of diffusion creep on precipitate-free zone formation in Ni–20% Cr-base alloys. Metal Sci J 6:13–16. https://doi.org/10.1179/030634572790446172

    Article  CAS  Google Scholar 

  26. Wolfenstine J, Ruano OA, Wadsworth J, Sherby OD (1993) Refutation of the relationship between denuded zones and diffusional creep. Scr Metall Mater 29:515–520. https://doi.org/10.1016/0956-716X(93)90157-N

    Article  CAS  Google Scholar 

  27. Burton B, Reynolds GL (1995) In defense of diffusional creep. Mater Sci Eng, A 191:135–141. https://doi.org/10.1016/0921-5093(94)09643-0

    Article  Google Scholar 

  28. Ruano OA, Sherby OD, Wadsworth J, Wolfenstine J (1996) Rebuttal to “In defense of diffusional creep.” Mater Sci Eng A 211:66–71. https://doi.org/10.1016/0921-5093(95)10090-3

    Article  Google Scholar 

  29. Ruano OA, Sherby OD, Wadsworth J, Wolfenstine J (1998) Diffusional creep and diffusion-controlled dislocation creep and their relation to denuded zones in Mg-ZrH2 materials. Scripta Mater 38:1307–1314. https://doi.org/10.1016/S1359-6462(98)00021-9

    Article  CAS  Google Scholar 

  30. Wadsworth J, Ruano OA, Sherby OD (2002) Denuded zones, diffusional creep, and grain boundary sliding. Metall and Mat Trans A 33:219–229. https://doi.org/10.1007/s11661-002-0084-7

    Article  Google Scholar 

  31. Jensrud O, Ryum N (1984) The development of microstructures in AI-Li alloys. Mater Sci Eng 64:229–236. https://doi.org/10.1016/0025-5416(84)90106-X

    Article  CAS  Google Scholar 

  32. Jha SC, Sanders TH, Dayananda MA (1987) Grain boundary precipitate free zones in Al-Li alloys. Acta Metall 35:473–482. https://doi.org/10.1016/0001-6160(87)90253-7

    Article  CAS  Google Scholar 

  33. Yao DP, Zhang YZ, Hu ZQ et al (1989) The formation and growth of PFZ at grain boundaries in Al-11.9at%Li alloy. Scr Metall 23:537–541. https://doi.org/10.1016/0036-9748(89)90447-X

    Article  CAS  Google Scholar 

  34. Wen H, Zhao B, Dong X et al (2020) A systematic investigation of precipitates in matrix and at grain boundaries in an alumina-forming austenitic steel during creep testing at 700 °C. Metall Mater Trans A 51:4186–4194. https://doi.org/10.1007/s11661-020-05848-4

    Article  CAS  Google Scholar 

  35. Peterson A, Baker I (2021) The formation mechanism, growth, and effect on the mechanical properties of precipitate free zones in the alumina-forming austenitic stainless steel Fe–20Cr–30Ni–2Nb–5Al during creep. Mater Sci Eng A 820:141561. https://doi.org/10.1016/j.msea.2021.141561

    Article  CAS  Google Scholar 

  36. Alvarado K, Janeiro I, Florez S et al (2021) Dissolution of the Primary γ′ Precipitates and Grain Growth during Solution Treatment of Three Nickel Base Superalloys. Metals 11:1921. https://doi.org/10.3390/met11121921

    Article  CAS  Google Scholar 

  37. Govaere A (2020) Impact des carbures sur la variabilité des propriétés en fatigue de superalliages pour disques. PhD Thesis, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique. https://tel.archives-ouvertes.fr/tel-03232119

  38. Devaux A, Picque B, Gervais M, et al (2012) AD730TM - A New Nickel-based Superalloy for High Temperature Engine Rotative Parts. In: Superalloys 2012 (Twelfth International Symposium). John Wiley & Sons, Inc., pp 911–919

  39. Thébaud L (2017) Etude des relations entre microstructure et propriétés mécaniques du nouveau superalliage base nickel AD730TM. Ecole Nationale Supérieure de Mécanique et d’Aérotechique. https://theses.hal.science/tel-01735104

  40. Locq D, Ramusat C, Franchet J-M, Devaux A (2019) Coarse grain C&W AD730 disk superalloy for high temperature applications. In: Journees annuelles SF2M. PARIS, France

  41. Mrozowski N, Hénaff G, Hamon F et al (2020) Aging of γ′ precipitates at 750 °C in the nickel-based superalloy AD730TM: a thermally or thermo-mechanically controlled process? Metals 10:426. https://doi.org/10.3390/met10040426

    Article  CAS  Google Scholar 

  42. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50. https://doi.org/10.1016/0022-3697(61)90054-3

    Article  Google Scholar 

  43. Wagner C (1961) Theory of precipitate change by redissolution. Z Electrochem 65:581–591

    CAS  Google Scholar 

  44. Calderon HA, Voorhees PW, Murray JL, Kostorz G (1994) Ostwald ripening in concentrated alloys. Acta Metall Mater 42:991–1000. https://doi.org/10.1016/0956-7151(94)90293-3

    Article  CAS  Google Scholar 

  45. Baldan A (2002) Ostwald ripening theories and their applications to nickel-base superalloys part I: Ostwald ripening theories. J Mater Sci 37:2171–2202. https://doi.org/10.1023/A:1015388912729

    Article  CAS  Google Scholar 

  46. Mrotzek M, Nembach E (2008) Ostwald ripening of precipitates during two successive heat treatments performed at different temperatures. Acta Mater 56:150–154. https://doi.org/10.1016/j.actamat.2007.09.024

    Article  CAS  Google Scholar 

  47. Masoumi F, Jahazi M, Shahriari D, Cormier J (2016) Coarsening and dissolution of γ′ precipitates during solution treatment of AD730™ Ni-based superalloy: mechanisms and kinetics models. J Alloy Compd 658:981–995. https://doi.org/10.1016/j.jallcom.2015.11.002

    Article  CAS  Google Scholar 

  48. Chen X, Yao Z, Dong J et al (2018) The effect of stress on primary MC carbides degeneration of Waspaloy during long term thermal exposure. J Alloy Compd 735:928–937. https://doi.org/10.1016/j.jallcom.2017.11.166

    Article  CAS  Google Scholar 

  49. Seret A (2019) Influence de la mise en forme sur les cinétiques de précipitation durcissante dans les superalliages base nickel Inconel® 625 et AD730TM. PhD Thesis, Université Paris Sciences et Lettres - PSL. https://pastel.archives-ouvertes.fr/tel-02501550

  50. Seret A, Moussa C, Bernacki M, Bozzolo N (2018) On the coupling between recrystallization and precipitation following hot deformation in a γ-γ′ nickel-based superalloy. Metall Mater Trans A 49:4199–4213. https://doi.org/10.1007/s11661-018-4707-z

    Article  CAS  Google Scholar 

  51. Furrer DU, Fecht H-J (1999) γ′ formation in superalloy U720LI. Scripta Mater 40:1215–1220. https://doi.org/10.1016/S1359-6462(99)00094-9

    Article  CAS  Google Scholar 

  52. Kreye H, Hornbogen E, Haessner F (1970) Recrystallization of supersaturated and plastically deformed solid solutions of nickel. Phys Stat Sol (a) 1:97–108. https://doi.org/10.1002/pssa.19700010112

    Article  CAS  Google Scholar 

  53. Bee JV, Jones AR, Howell PR (1981) The interaction of recrystallizing interfaces with intragranular precipitate dispersions in a nickel-base superalloy. J Mater Sci 16:1471–1476. https://doi.org/10.1007/BF00553960

    Article  CAS  Google Scholar 

  54. Porter A, Ralph B (1981) The recrystallization of nickel-base superalloys. J Mater Sci 16:707–713. https://doi.org/10.1007/BF02402788

    Article  CAS  Google Scholar 

  55. Doherty RD (1982) Role of interfaces in kinetics of internal shape changes. Metal Sci 16:1–14. https://doi.org/10.1179/030634582790427019

    Article  Google Scholar 

  56. Porter AJ, Ralph B (1983) Recrystallization of a nickel-base superalloy: Kinetics and microstructural development. Mater Sci Eng 59:69–78. https://doi.org/10.1016/0025-5416(83)90089-7

    Article  CAS  Google Scholar 

  57. Singh ARP, Nag S, Chattopadhyay S et al (2013) Mechanisms related to different generations of γ′ precipitation during continuous cooling of a nickel base superalloy. Acta Mater 61:280–293. https://doi.org/10.1016/j.actamat.2012.09.058

    Article  CAS  Google Scholar 

  58. Rielli VV, Luo M, Farabi E et al (2024) Interphase boundary segregation in IN738 manufactured via electron-beam powder bed fusion. Scripta Mater 244:116033. https://doi.org/10.1016/j.scriptamat.2024.116033

    Article  CAS  Google Scholar 

  59. Sohrabi MJ, Mirzadeh H (2019) Interdiffusion coefficients of alloying elements in a typical Ni-based superalloy. Vacuum 169:108875. https://doi.org/10.1016/j.vacuum.2019.108875

    Article  CAS  Google Scholar 

  60. Rothman SJ, Nowicki LJ, Murch GE (1980) Self-diffusion in austenitic Fe-Cr–Ni alloys. J Phys F Met Phys 10:383–398. https://doi.org/10.1088/0305-4608/10/3/009

    Article  CAS  Google Scholar 

  61. Kalogeridis A, Kolbe M, Nembach E (1994) The effect of Chromium on the solubility limits of the γ′-forming elements in a Ni–Fe–Cr base superalloy. Scr Metall Mater 31:1239–1242. https://doi.org/10.1016/0956-716X(94)90583-5

    Article  CAS  Google Scholar 

  62. Patil RV, Kale GB (1996) Chemical diffusion of niobium in nickel. J Nucl Mater 230:57–60. https://doi.org/10.1016/0022-3115(96)80010-9

    Article  CAS  Google Scholar 

  63. Govaere A, Rouffié A-L, Franchet J-M et al (2020) Is the carbon content really an issue for the LCF durability of forged γ/γ′ Ni-based disk alloys? Superalloys 2020. Springer International Publishing, Cham, pp 591–602

    Chapter  Google Scholar 

  64. Campbell CE, Boettinger WJ, Kattner UR (2002) Development of a diffusion mobility database for Ni-base superalloys. Acta Mater 50:775–792. https://doi.org/10.1016/S1359-6454(01)00383-4

    Article  CAS  Google Scholar 

  65. Grosdidier T, Hazotte A, Simon A (1998) Precipitation and dissolution processes in γ/γ′ single crystal nickel-based superalloys. Mater Sci Eng, A 256:183–196. https://doi.org/10.1016/S0921-5093(98)00795-3

    Article  Google Scholar 

  66. Hazotte A, Grosdidier T, Denis S (1996) γ′ precipitate splitting in nickel-based superalloys: a 3-D finite element analysis. Scripta Mater 34:601–608. https://doi.org/10.1016/1359-6462(95)00554-4

    Article  CAS  Google Scholar 

  67. Laurence A, Cormier J, Villechaise P et al (2014) Impact of the solution cooling rate and of thermal aging on the creep properties of the new cast & wrought René 65 Ni-based superalloy. 8th international symposium on superalloy 718 and derivatives. John Wiley & Sons Inc, Hoboken, pp 333–348

    Google Scholar 

  68. Monajati H, Jahazi M, Bahrami R, Yue S (2004) The influence of heat treatment conditions on γ′ characteristics in Udimet® 720. Mater Sci Eng A 373:286–293. https://doi.org/10.1016/j.msea.2004.01.027

    Article  CAS  Google Scholar 

  69. Liu H, Zheng L, Wang D et al (2022) Dissolution and coarsening kinetics of γ′ precipitates in waspaloy during solution treatment at temperatures of 1000–1045 °C. J of Materi Eng and Perform 31:7748–7756. https://doi.org/10.1007/s11665-022-06768-7

    Article  CAS  Google Scholar 

  70. Wang H, Liu D, Shi Y et al (2019) Matrix-diffusion-controlled coarsening of the γ′ phase in waspaloy. Met Mater Int 25:1410–1419. https://doi.org/10.1007/s12540-019-00274-7

    Article  CAS  Google Scholar 

  71. Ges AM, Fornaro O, Palacio HA (2007) Coarsening behaviour of a Ni-base superalloy under different heat treatment conditions. Mater Sci Eng A 458:96–100. https://doi.org/10.1016/j.msea.2006.12.107

    Article  CAS  Google Scholar 

  72. Kaptay G (2015) Approximated equations for molar volumes of pure solid fcc metals and their liquids from zero Kelvin to above their melting points at standard pressure. J Mater Sci 50:678–687. https://doi.org/10.1007/s10853-014-8627-z

    Article  CAS  Google Scholar 

  73. Footner PK, Richards BP (1982) Long—term growth of superalloy γ′ particles. J Mater Sci 17:2141–2153. https://doi.org/10.1007/BF00540433

    Article  CAS  Google Scholar 

  74. Zhao S, **e X, Smith GD, Patel SJ (2004) Gamma prime coarsening and age-hardening behaviors in a new nickel base superalloy. Mater Lett 58:1784–1787. https://doi.org/10.1016/j.matlet.2003.10.053

    Article  CAS  Google Scholar 

  75. Ardell AJ, Nicholson RB (1966) The coarsening of γ′ in Ni–Al alloys. J Phys Chem Solids 27:1793–1794. https://doi.org/10.1016/0022-3697(66)90110-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work received financial support from the Industrial Chair ANR-SAFRAN TOPAZE (ANR-19-CHIN-0005). Institut Pprime gratefully acknowledges the "Contrat de Plan Etat—Région Nouvelle-Aquitaine" (CPER) as well as the "Fonds Européen de Développement Régional” (FEDER) for their financial support to part of the reported work. The authors acknowledge financial support from the "Centre National de la Recherche Scientifique—Comissariat à l’Energie Atomique, Microscopie Electronique en Transmission et Sonde Atomique” (CNRS-CEA METSA) French network (FR CNRS 3507) on the "Institut de Recherche des Matériaux avancés—Groupe de Physique des Matériaux" (IRMA-GPM) platform for the Atomic Probe Tomography experiments. The authors gratefully acknowledge Safran Aircraft Engines and Aubert & Duval for providing the alloys used in this study. The authors would like to thank Dr. Daniel Galy and Dr. Edern Menou from Safran Tech, respectively, for their help on EDS-X analyses and for the ThermoCalc simulations, Dr. Hadi Bahsoun from Institut Pprime for Dual Beam FIB extraction, Dr. Ivan Blum from Groupe de Physique des Matériaux for the help in APT experiments, Fabio Machado Alves da Fonseca, PhD student at Institut Pprime/Safran Tech, for reviewing the first draft and for his help in the understanding of diffusion mechanisms. Maggie Elliott, English Professor at ISAE-ENSMA, is gratefully acknowledged for editing our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Guillaume Burlot was involved in the conceptualization, methodology, investigation, data curation, formal analysis, and writing–original draft. Dominique Eyidi contributed to the methodology, investigation, data curation, and writing—review and editing. Emmanuel Cadel assisted in the investigation, data curation, and writing—review and editing. Jonathan Cormier was involved in the methodology, data curation, conceptualization, formal analysis, resources, supervision, funding acquisition, and writing—review and editing. Patrick Villechaise contributed to the methodology, data curation, conceptualization, supervision, formal analysis, funding acquisition, and writing—review and editing.

Corresponding author

Correspondence to Guillaume Burlot.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Sophie Primig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlot, G., Cormier, J., Eyidi, D. et al. Precipitate-free zones formation at grain boundaries in γ/γ′ Ni-based superalloys. J Mater Sci 59, 10485–10507 (2024). https://doi.org/10.1007/s10853-024-09777-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09777-0

Navigation