Log in

Synergistic strengthening of Al matrix composites by in situ pyrolysis of C and precipitation of nanophases

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Owing to inadequate interface contact between carbon and aluminum, enhancing the Al/C interface is crucial for the fabrication of high-performance Al matrix composites. This study selected polyvinyl butyral (PVB) with excellent dispersion properties as the carbon source, simultaneously introducing silver to achieve synergistic reinforcement between silver and carbon in Al matrix composites, offering a novel reinforcement approach for Al matrix composites. The Al–16Ag–C composite is fabricated through the in situ pyrolysis of PVB followed by hot-pressing sintering. Subsequently, the effect of temperature on the microstructural evolution and mechanical properties of the composite is investigated. Microstructural characterization demonstrates the formation of two alloy phases, namely Ag2Al and Al4C3, within the Al–16Ag–C composite. The alloy phases, distributed at the grain boundaries, enhance the material’s strength by impeding dislocation motion, increasing dislocation density within the matrix, and limiting grain growth. The Al–16Ag–C composite, sintered at 630 °C, exhibits a remarkable ultimate tensile strength of 481 MPa and an elongation of 16.84%, representing a significant enhancement compared to pure Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data availability

Data will be available to readers upon request.

References

  1. Ujah CO, Kallon DVV (2022) Trends in aluminium matrix composite development. Crystals 12:1357. https://doi.org/10.3390/cryst12101357

    Article  CAS  Google Scholar 

  2. Garg P, Jamwal A, Kumar D, Sadasivuni KK, Hussain CM, Gupta P (2019) Advance research progresses in aluminium matrix composites: manufacturing & applications. J Mater Res Technol 8:4924–4939. https://doi.org/10.1016/j.jmrt.2019.06.028

    Article  CAS  Google Scholar 

  3. Ge X, Klingshirn C, Morales M, Wuttig M, Rabin O, Zhang S, Salamanca-Riba LG (2021) Electrical and structural characterization of nano-carbon–aluminum composites fabricated by electro-charging-assisted process. Carbon 173:115–125. https://doi.org/10.1016/j.carbon.2020.10.063

    Article  CAS  Google Scholar 

  4. Mu XN, Zhang HM, Chen PW, Cheng XW, Liu L, Ge YX, **ong N, Zheng YC (2021) Achieving high performance in graphite nano-flakes reinforced titanium matrix composites through a novel reaction interface design. Carbon 175:334–351. https://doi.org/10.1016/j.carbon.2021.01.113

    Article  CAS  Google Scholar 

  5. Tjong SC (2013) Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R Rep 74:281–350. https://doi.org/10.1016/j.mser.2013.08.001

    Article  Google Scholar 

  6. Brutin D, Starov V (2018) Recent advances in droplet wetting and evaporation. Chem Soc Rev 47:558–585. https://doi.org/10.1039/c6cs00902f

    Article  CAS  PubMed  Google Scholar 

  7. Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2011) The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Compos Part A Appl Sci Manuf 42:234–243. https://doi.org/10.1016/j.compositesa.2010.11.008

    Article  CAS  Google Scholar 

  8. Ju BY, Yang WS, Shao PZ, Hussain M, Zhang Q, **u ZY, Hou XW, Qiao J, Wu GH (2020) Effect of interfacial microstructure on the mechanical properties of GNPs/Al composites. Carbon 162:346–355. https://doi.org/10.1016/j.carbon.2020.02.069

    Article  CAS  Google Scholar 

  9. Çelik YH, Seçilmiş K (2017) Investigation of wear behaviours of Al matrix composites reinforced with different B4C rate produced by powder metallurgy method. Adv Powder Technol 28:2218–2224. https://doi.org/10.1016/j.apt.2017.06.002

    Article  CAS  Google Scholar 

  10. Kim IY, Lee JH, Lee GS, Baik SH, Kim YJ, Lee YZ (2009) Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions. Wear 267:593–598. https://doi.org/10.1016/j.wear.2008.12.096

    Article  CAS  Google Scholar 

  11. Liao JZ, Tan MJ, Sridhar I (2010) Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater Des 31:S96–S100. https://doi.org/10.1016/j.matdes.2009.10.022

    Article  CAS  Google Scholar 

  12. Jiang L, Li ZQ, Fan GL, Cao LL, Zhang D (2012) Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scr Mater 66:331–334. https://doi.org/10.1016/j.scriptamat.2011.11.023

    Article  CAS  Google Scholar 

  13. Zhou WW, Yamaguchi T, Kikuchi K, Nomura N, Kawasaki A (2017) Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater 125:369–376. https://doi.org/10.1016/j.actamat.2016.12.022

    Article  CAS  Google Scholar 

  14. Yan SJ, Dai SL, Zhang XY, Yang C, Hong QH, Chen JZ, Lin ZM (2014) Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng A 612:440–444. https://doi.org/10.1016/j.msea.2014.06.077

    Article  CAS  Google Scholar 

  15. Gao X, Yue HY, Guo E, Zhang H, Lin XY, Yao LH, Wang B (2016) Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater Des 94:54–60. https://doi.org/10.1016/j.matdes.2016.01.034

    Article  CAS  Google Scholar 

  16. Guan R, Wang Y, Zheng S, Su N, Ji Z, Liu Z, An Y, Chen B (2019) Fabrication of aluminum matrix composites reinforced with Ni-coated graphene nanosheets. Mater Sci Eng A 754:437–446. https://doi.org/10.1016/j.msea.2019.03.068

    Article  CAS  Google Scholar 

  17. Naji H, Zebarjad SM, Sajjadi SA (2008) The effects of volume percent and aspect ratio of carbon fiber on fracture toughness of reinforced aluminum matrix composites. Mater Sci Eng A 486:413–420. https://doi.org/10.1016/j.msea.2007.09.030

    Article  CAS  Google Scholar 

  18. Hu JN, Zhang J, Luo GQ, Sun Y, Shen Q, Zhang LM (2021) Effectively enhanced strength by interfacial reactions in in-situ carbon reinforced Al matrix composites. Vacuum 188:110148. https://doi.org/10.1016/j.vacuum.2021.110148

    Article  CAS  Google Scholar 

  19. Chu K, Jia CC, Liang XB, Chen H, Guo H (2009) The thermal conductivity of pressure infiltrated SiCp/Al composites with various size distributions: experimental study and modeling. Mater Des 30:3497–3503. https://doi.org/10.1016/j.matdes.2009.03.009

    Article  CAS  Google Scholar 

  20. Chu K, Jia CC, Liang XB, Chen H, Guo H, Yin FZ, Qu XH (2009) Experimental and modeling study of the thermal conductivity of SiCp/Al composites with bimodal size distribution. J Mater Sci 44:4370–4378. https://doi.org/10.1007/s10853-009-3655-9

    Article  CAS  Google Scholar 

  21. Chu K, Jia CC, Tian WH, Liang XB, Chen H, Guo H (2010) Thermal conductivity of spark plasma sintering consolidated SiCp/Al composites containing pores: numerical study and experimental validation. Compos Part A Appl Sci Manuf 41:161–167. https://doi.org/10.1016/j.compositesa.2009.10.001

    Article  CAS  Google Scholar 

  22. Zhang CC, Luo GQ, Zhang J, Dai Y, Shen Q, Zhang LM (2017) Synthesis and thermal conductivity improvement of W-Cu composites modified with WC interfacial layer. Mater Des 127:233–242. https://doi.org/10.1016/j.matdes.2017.04.090

    Article  CAS  Google Scholar 

  23. Hu JN, Zhang J, Luo GQ, Sun Y, Shen Q, Zhang LM (2020) Design and synthesis of C–O grain boundary strengthening of Al composites. Nanomaterials 10:438. https://doi.org/10.3390/nano10030438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei WF, Liao QH, Yang ZF, Li XB, Huang ZL, Ren JW, Yang Y, Wu GN (2022) Interfacial modification and performance enhancement of carbon matrix/aluminum composites. J Alloys Compd 903:163877. https://doi.org/10.1016/j.jallcom.2022.163877

    Article  CAS  Google Scholar 

  25. **n L, Tian X, Yang WS, Chen GQ, Qiao J, Hu FJ, Zhang Q, Wu GH (2018) Enhanced stability of the diamond/Al composites by W coatings prepared by the magnetron sputtering method. J Alloys Compd 763:305–313. https://doi.org/10.1016/j.jallcom.2018.05.310

    Article  CAS  Google Scholar 

  26. Huang Y, Su Y, Li S, Ouyang Q, Zhang G, Zhang L, Zhang D (2016) Fabrication of graphite film/aluminum composites by vacuum hot pressing: process optimization and thermal conductivity. Compos B Eng 107:43–50. https://doi.org/10.1016/j.compositesb.2016.09.051

    Article  CAS  Google Scholar 

  27. Li PB, Hu JN, Fang T, Zhu YL, Sun Y, Wang X, Yang XB, Shen Q, Luo GQ (2022) Microstructure regulation and strengthening mechanism of Al/Ag composites prepared by plasma activated sintered. Mater Sci Eng A 852:143631. https://doi.org/10.1016/j.msea.2022.143631

    Article  CAS  Google Scholar 

  28. Zharkov SM, Altunin RR, Yumashev VV, Moiseenko ET, Belousov OV, Solovyov LA, Volochaev MN, Zeer GM (2021) Kinetic study of a solid-state reaction in Ag/Al multilayer thin films by in situ electron diffraction and simultaneous thermal analysis. J Alloys Compd 871:159474. https://doi.org/10.1016/j.jallcom.2021.159474

    Article  CAS  Google Scholar 

  29. Wloch G, Skrzekut T, Sobota J, Woznicki A, Błaż L (2017) Silver matrix composite reinforced by aluminium-silver intermetallic phases. Arch Metall Mater 62:427–434. https://doi.org/10.1515/amm-2017-0066

    Article  CAS  Google Scholar 

  30. Miserez A, Müller R, Mortensen A (2006) Increasing the strength/toughness combination of high volume fraction particulate metal matrix composites using an Al–Ag matrix alloy. Adv Eng Mater 8:56–62. https://doi.org/10.1002/adem.200500185

    Article  CAS  Google Scholar 

  31. Fu SW, Lee CC (2018) Direct silver to aluminum solid-state bonding processes. Mater Sci Eng A 722:160–166. https://doi.org/10.1016/j.msea.2018.03.011

    Article  CAS  Google Scholar 

  32. Fu SW, Lee CC (2019) New solid-state die-attach method using silver foil bonded on aluminum substrate by eutectic reaction. J Alloys Compd 774:1207–1215. https://doi.org/10.1016/j.jallcom.2018.09.254

    Article  CAS  Google Scholar 

  33. Rashad M, Pan F, Yu Z, Asif M, Lin H, Pan R (2015) Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Prog Nat Sci 25:460–470. https://doi.org/10.1016/j.pnsc.2015.09.005

    Article  CAS  Google Scholar 

  34. Kwon H, Estili M, Takagi K, Miyazaki T, Kawasaki A (2009) Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47:570–577. https://doi.org/10.1016/j.carbon.2008.10.041

    Article  CAS  Google Scholar 

  35. Guo BS, Chen B, Zhang XM, Cen X, Wang XH, Song M, Ni S, Yi JH, Shen T, Du Y (2018) Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes. Carbon 135:224–235. https://doi.org/10.1016/j.carbon.2018.04.048

    Article  CAS  Google Scholar 

  36. Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P, Rizzo A (2017) Influence of Al2O3 nanoparticles on microstructure and strengthening mechanism of Al-based nanocomposites produced via spark plasma sintering. J Mater Eng Perform 26:2928–2936. https://doi.org/10.1007/s11665-017-2699-2

    Article  CAS  Google Scholar 

  37. Zhao K, Duan ZY, Liu JL, Kang GZ, An LN (2021) Strengthening mechanisms of 15 vol.% Al2O3 nanoparticles reinforced aluminum matrix nanocomposite fabricated by high energy ball Milling and vacuum hot pressing. Acta Metall Sin Engl 35:915–921. https://doi.org/10.1007/s40195-021-01306-1

    Article  CAS  Google Scholar 

  38. Wang H, Geng HW, Zhou DS, Niitsu KD, Muránsky O, Zhang DL (2020) Multiple strengthening mechanisms in high strength ultrafine-grained Al–Mg alloys. Mater Sci Eng A 771:138613. https://doi.org/10.1016/j.msea.2019.138613

    Article  CAS  Google Scholar 

  39. Wang ZQ, Liu XF, Zhang JY, Bian XF (2004) Study of the reaction mechanism in the Al–C binary system through DSC and XRD. J Mater Sci 39:2179–2181. https://doi.org/10.1023/b:jmsc.0000017782.61749.36

    Article  CAS  Google Scholar 

  40. Williamson GK, Smallman RE (1956) III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos Mag 1:34–46. https://doi.org/10.1080/14786435608238074

    Article  CAS  Google Scholar 

  41. Ma K, Wen H, Hu T, Top** TD, Isheim D, Seidman DN, Lavernia EJ, Schoenung JM (2014) Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater 62:141–155. https://doi.org/10.1016/j.actamat.2013.09.042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China [2021YFB3802300], the Guangdong Major Project of Basic and Applied Basic Research [2021B0301030001], the Independent Innovation Projects of the Hubei Longzhong Laboratory [2022ZZ-33], and the National Natural Science Foundation of China [Grant No. 52104363].

Author information

Authors and Affiliations

Authors

Contributions

Junguo Li was involved in conceptualization and methodology. Xuebin Yang participated in data curation, writing—original draft preparation, and formal analysis. Peibo Li participated in data curation and writing—reviewing and editing. Yang Zhang was involved in data curation. Guoqiang Luo helped with resources. Qiang Shen helped with funding acquisition and resources. Yi Sun was involved in methodology, writing, and review.

Corresponding author

Correspondence to Yi Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, X., Li, P. et al. Synergistic strengthening of Al matrix composites by in situ pyrolysis of C and precipitation of nanophases. J Mater Sci 59, 6792–6806 (2024). https://doi.org/10.1007/s10853-024-09633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09633-1

Navigation