Log in

NH2-CAU-1 modified polyphenylene sulfone (PPSU) membrane for separation of oil-in-water emulsions

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The wettability of the membrane surface is very important for the separation of oil-in-water emulsion. In this paper, the hydrophilic NH2-CAU-1 was added to the membrane surface by interfacial polymerization, which greatly improved the separation efficiency of oil-in-water emulsion. The effect of the amount of NH2-CAU-1 on the separation efficiency of TFN membrane was studied, and it was determined that TFN-1 membrane had ultra-high separation efficiency of oil-in-water emulsion (> 97.60%). TFN-1 membrane has a high underwater oil contact angle (higher than 139.53°), resulting in excellent oil adhesion resistance on the membrane surface. The universality and cycling performance of TFN-1 membrane were tested, and UWOCA had good stability under strong acid, strong base and different NaCl concentrations, and the separation efficiency did not change significantly after 8 cycles. The results show that TFN-1 membrane has excellent performance in separating oil-in-water emulsions and has broad application prospects in separating oil-in-water emulsions stabilized by surfactants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All data and code will be made available on request.

References

  1. Pavlov V, James NA, Masden EA, de Aguiar VCM, Hole LR, Liimatainen H, Pongrácz E (2023) Impacts of offshore oil spill accidents on island bird communities: a test run study around Orkney and Svalbard archipelagos. Environ Pollut 334:122193. https://doi.org/10.1016/j.envpol.2023.122193

    Article  CAS  PubMed  Google Scholar 

  2. Deng Y, Wu Y, Chen G, Zheng X, Dai M, Peng C (2021) Metal-organic framework membranes: recent development in the synthesis strategies and their application in oil-water separation. Chem Eng J 405:127004. https://doi.org/10.1016/j.cej.2020.127004

    Article  CAS  Google Scholar 

  3. Raj A, Rego RM, Ajeya KV, Jung H-Y, Altalhi T, Neelgund GM, Kigga M, Kurkuri MD (2023) Underwater oleophobic-super hydrophilic strontium-MOF for efficient oil/water separation. Chem Eng J 453:139757. https://doi.org/10.1016/j.cej.2022.139757

    Article  CAS  Google Scholar 

  4. Xu Y, Wang G, Zhu L, Shen L, Zhang Z, Ren T, Zeng Z, Chen T, Xue Q (2021) Multifunctional superhydrophobic adsorbents by mixed-dimensional particles assembly for polymorphic and highly efficient oil-water separation. J Hazard Mater 407:124374. https://doi.org/10.1016/j.jhazmat.2020.124374

    Article  CAS  PubMed  Google Scholar 

  5. Hu X, Yang B, Hao M, Chen Z, Liu Y, Ramakrishna S, Wang X, Yao J (2023) Preparation of high elastic bacterial cellulose aerogel through thermochemical vapor deposition catalyzed by solid acid for oil-water separation. Carbohyd Polym 305:120538. https://doi.org/10.1016/j.carbpol.2023.120538

    Article  CAS  Google Scholar 

  6. Liu Y, Hao M, Chen Z, Ramakrishna S, Liu Y, Wang X, Hu X, Wei Y (2023) Recent advances in the development of nanofiber-based aerogel for oil-water separation: a review. Fuel 354:129338. https://doi.org/10.1016/j.fuel.2023.129338

    Article  CAS  Google Scholar 

  7. Roslan RA, Lau WJ, Ong CS, Tan YZ, Ismail AF (2023) Simple surface modification of steel mesh for efficient oil/water separation via gravity filtration. J W Process Eng 54:104063. https://doi.org/10.1016/j.jwpe.2023.104063

    Article  Google Scholar 

  8. Cai Y, Chen D, Li N, Xu Q, Li H, He J, Lu J (2020) A self-cleaning heterostructured membrane for efficient oil-in-water emulsion separation with stable flux. Adv Mater 32(25):2001265. https://doi.org/10.1002/adma.202001265

    Article  CAS  Google Scholar 

  9. Yang J, Li H-N, Chen Z-X, He A, Zhong Q-Z, Xu Z-K (2019) Janus membranes with controllable asymmetric configurations for highly efficient separation of oil-in-water emulsions. J Mater Chem A 7(13):7907–7917. https://doi.org/10.1039/C9TA00575G

    Article  CAS  Google Scholar 

  10. **e A, Wu Y, Liu Y, Xue C, Ding G, Cheng G, Cui J, Pan J (2022) Robust antifouling NH2-MIL-88B coated quartz fibrous membrane for efficient gravity-driven oil-water emulsion separation. J Membr Sci 644:120093. https://doi.org/10.1016/j.memsci.2021.120093

    Article  CAS  Google Scholar 

  11. Usha ZR, Babiker DMD, Yu R, Yang J, Chen W, Chen X, Li L (2022) Super hydrophilic modified biaxially oriented polypropylene microporous membrane for excellent gravity-driven oil/water emulsion separation. J Membr Sci 660:120840. https://doi.org/10.1016/j.memsci.2022.120840

    Article  CAS  Google Scholar 

  12. Liu C, Zhu C, Wang H, **e S, Zhou J, Fang H (2022) Synergistic removal of organic pollutants by Co-doped MIL-53(Al) composite through the integrated adsorption/photocatalysis. J Solid State Chem 316:123582. https://doi.org/10.1016/j.jssc.2022.123582

    Article  CAS  Google Scholar 

  13. Myeong J, Deshmukh PR, Gyu Shin W (2023) Facile preparation of superhydrophilic and underwater superoleophobic stainless steel mesh for oil–water separation. J Ind Eng Chem 120:398–409. https://doi.org/10.1016/j.jiec.2022.12.047

    Article  CAS  Google Scholar 

  14. Sağlam S, Türk FN, Arslanoğlu H (2023) Use and applications of metal-organic frameworks (MOF) in dye adsorption: review. J Environ Chem Eng 11(5):110568. https://doi.org/10.1016/j.jece.2023.110568

    Article  CAS  Google Scholar 

  15. Rehman A, Jahan Z, Khan Niazi MB, Noor T, Javed F, Othman SI, Abukhadra MR, Nawaz A (2023) Graphene-grafted bimetallic MOF membranes for hazardous & toxic contaminants treatment. Chemosphere 340:139721. https://doi.org/10.1016/j.chemosphere.2023.139721

    Article  CAS  PubMed  Google Scholar 

  16. Yu Y, Li W, Yang H, Wei Q, Hou L, Wu Z, Jiang Y, Lv C, Huang Y, Tang J (2023) 4-Methyl-5-vinyl thiazole modified Ni-MOF/g-C3N4/CdS composites for efficient photocatalytic hydrogen evolution without precious metal cocatalysts. J Colloid Interface Sci 651:221–234. https://doi.org/10.1016/j.jcis.2023.07.210

    Article  ADS  CAS  PubMed  Google Scholar 

  17. **ao S, Huo X, Tong Y, Cheng C, Yu S, Tan X (2021) Improvement of thin-film nanocomposite (TFN) membrane performance by CAU-1 with low charge and small size. Sep Purif Technol 274:118467. https://doi.org/10.1016/j.seppur.2021.118467

    Article  CAS  Google Scholar 

  18. Zhong X, Liang W, Wang H, Xue C, Hu B (2021) Aluminum-based metal-organic frameworks (CAU-1) highly efficient UO22+ and TcO4 ions immobilization from aqueous solution. J Hazard Mater 407:124729. https://doi.org/10.1016/j.jhazmat.2020.124729

    Article  CAS  PubMed  Google Scholar 

  19. Dai J, Li S, Liu J, He J, Li J, Wang L, Lei J (2019) Fabrication and characterization of a defect-free mixed matrix membrane by facile mixing PPSU with ZIF-8 core–shell microspheres for solvent-resistant nanofiltration. J Membr Sci 589:117261. https://doi.org/10.1016/j.memsci.2019.117261

    Article  CAS  Google Scholar 

  20. Dehban A, Kargari A, Ashtiani FZ (2020) Preparation and optimization of antifouling PPSU/PES/SiO2 nanocomposite ultrafiltration membranes by VIPS-NIPS technique. J Ind Eng Chem 88:292–311. https://doi.org/10.1016/j.jiec.2020.04.028

    Article  CAS  Google Scholar 

  21. Bao Z, Chen D, Li N, Xu Q, Li H, He J, Lu J (2020) Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation. J Membr Sci 598:117804. https://doi.org/10.1016/j.memsci.2019.117804

    Article  CAS  Google Scholar 

  22. Chen C, Weng D, Mahmood A, Chen S, Wang J (2019) Separation mechanism and construction of surfaces with special wettability for oil/water separation. ACS Appl Mater Interfaces 11(11):11006–11027. https://doi.org/10.1021/acsami.9b01293

    Article  CAS  PubMed  Google Scholar 

  23. Chandrashekhar Nayak M, Isloor AM, Inamuddin B, Lakshmi HM, Marwani IK (2020) Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd2+ from aqueous solutions. Arab J Chem 13(3):4661–4672. https://doi.org/10.1016/j.arabjc.2019.10.007

    Article  CAS  Google Scholar 

  24. Kumar M, Isloor AM, Todeti SR, Ismail AF, Farnood R (2021) Hydrophilic nano-aluminum oxide containing polyphenylsulfone hollow fiber membranes for the extraction of arsenic (As–V) from drinking water. J W Process Eng 44:102357. https://doi.org/10.1016/j.jwpe.2021.102357

    Article  Google Scholar 

  25. Zhou F, Wang Y, Dai L, Xu F, Qu K, Xu Z (2022) Anchoring metal organic frameworks on nanofibers via etching-assisted strategy: Toward water-in-oil emulsion separation membranes. Sep Purif Technol 281:119812. https://doi.org/10.1016/j.seppur.2021.119812

    Article  CAS  Google Scholar 

  26. Wu L, Zhang Q, Wang X, Wang N, Ning X, Ming J (2023) Electrospun polyethersulfone@MOF composite membranes for air cleaning and oil-water separation. J Environ Chem Eng 11(3):110044. https://doi.org/10.1016/j.jece.2023.110044

    Article  CAS  Google Scholar 

  27. Wang Q, Yu Z, Zhu X, **ang Q, Chen H, Pang Y (2022) ZIF-67 modified MXene/sepiolite composite membrane for oil–water separation and heavy metal removal. J Ind Eng Chem 115:314–328. https://doi.org/10.1016/j.jiec.2022.08.014

    Article  CAS  Google Scholar 

  28. Zhao J, Cao L, Wang X, Huo H, Lin H, Wang Q, Yang X, Vogel F, Li W, Lin Z, Zhang P (2023) MOF@Polydopamine-incorporated membrane with high permeability and mechanical property for efficient fouling-resistant and oil/water separation. Environ Res 236:116685. https://doi.org/10.1016/j.envres.2023.116685

    Article  CAS  PubMed  Google Scholar 

  29. Miyasaka K, Imai Y, Tajima K (2023) Preparation of oil-in-water and water-in-oil emulsions with the same composition using hydrophilic nanoparticles by three-phase emulsification. Colloids Surf A Physchem Eng Asp 670:131598. https://doi.org/10.1016/j.colsurfa.2023.131598

    Article  CAS  Google Scholar 

  30. Su Y, Fan T, Cui W, Li Y, Ramakrishna S, Long Y (2022) Advanced electrospun nanofibrous materials for efficient oil/water separation. Adv Fiber Mater 4(5):938–958. https://doi.org/10.1007/s42765-022-00158-3

    Article  CAS  Google Scholar 

  31. Zhang J, Zhang F, Fang W, ** J (2023) Membrane wettability manipulation via mixed-dimensional heterostructured surface towards highly efficient oil-in-water emulsion separation. J Membr Sci 672:121472. https://doi.org/10.1016/j.memsci.2023.121472

    Article  CAS  Google Scholar 

  32. Zheng X, Liu S, Rehman S, Li Z, Zhang P (2020) Highly improved adsorption performance of metal-organic frameworks CAU-1 for trace toluene in humid air via sequential internal and external surface modification. Chem Eng J 389:123424. https://doi.org/10.1016/j.cej.2019.123424

    Article  CAS  Google Scholar 

  33. Zhai M, Yoshioka T, Yang J, Wang J, Zhang D, Lu J, Zhang Y (2021) Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane. Chin J Chem Eng 33:104–111. https://doi.org/10.1016/j.cjche.2020.08.048

    Article  CAS  Google Scholar 

  34. Jelea A (2018) On the Laplace-Young equation applied to spherical fluid inclusions in solid matrices. J Nucl Mater 505:127–133. https://doi.org/10.1016/j.jnucmat.2018.03.051

    Article  ADS  CAS  Google Scholar 

  35. Chen T, Lewis A, Chen Z, Fan X, Radacsi N, Semiao AJC, Wang H, Huang Y (2020) Smart ZIF-L mesh films with switchable superwettability synthesized via a rapid energy-saving process. Sep Purif Technol 240:116647. https://doi.org/10.1016/j.seppur.2020.116647

    Article  CAS  Google Scholar 

  36. Omeje IS, Itina TE (2022) Numerical study of the wetting dynamics of droplet on laser textured surfaces: beyond classical Wenzel and Cassie-Baxter model. Appl Surf Sci Adv 9:100250. https://doi.org/10.1016/j.apsadv.2022.100250

    Article  Google Scholar 

  37. Xu J, **e A, Sun H, Wu Y, Li C, Xue C, Cui J, Pan J (2023) Construction of tannic acid-Fe complex coated PVDF membrane via simple spraying method for oil/water emulsion separation. Colloids Surf, A: Physchem Eng Asp 671:131621. https://doi.org/10.1016/j.colsurfa.2023.131621

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research is supported by Science and Technology Project of Hebei Education Department (ZD2022070).

Author information

Authors and Affiliations

Authors

Contributions

XL helped in conceptualization; data curation; formal analysis; investigation; methodology; visualization; roles/writing—original draft; and writing–review and editing. SY was involved in formal analysis; investigation; methodology; project administration. TG contributed to funding acquisition; project administration; resources; software; supervision. YC helped in investigation; methodology; software; supervision; validation. XZ performed investigation; project administration; resources. SX contributed to project administration; resources; supervision; validation.

Corresponding authors

Correspondence to Shouwu Yu or Shujuan **ao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MPG 1042 kb)

Supplementary file2 (MPG 520 kb)

Supplementary file3 (DOCX 1017 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Yu, S., Gao, T. et al. NH2-CAU-1 modified polyphenylene sulfone (PPSU) membrane for separation of oil-in-water emulsions. J Mater Sci 59, 3177–3190 (2024). https://doi.org/10.1007/s10853-024-09403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09403-z

Navigation