Log in

Ecofriendly β-N-butyl amino propionic acid as green corrosion inhibitor for N80 steel in CO2-saturated brine water

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To mitigate CO2 corrosion in the oil and gas industry, a green non-toxic β-N-butyl amino propionic acid (BAA) was synthesized using a low-energy and zero-waste one-pot method. The effectiveness of BAA as a corrosion inhibitor for N80 steel in CO2-saturated brine water was investigated through experimental measurements and theoretical modeling. The results demonstrate that BAA functions as an effective mixed-type corrosion inhibitor. BAA molecules interact with F (1 1 0) with the–COO– and–NH2+-moiety in the hydrophilic head group, and the hydrophobic groups are adsorbed on the steel surface in a configuration 45° away from the steel surface. The adsorption is a mixture of physical and chemical processes and is consistent with the Langmuir isothermal adsorption formula. When the concentration is greater than 50 ppm, a complete corrosion inhibitor film with high hydrophobicity can be adsorbed on the steel surface, which can effectively impede the diffusion of corrosive species from brine to the steel surface.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Usman BJ, Ali SA (2018) Carbon dioxide corrosion inhibitors: a review. Arab J Sci Eng 43:1–22. https://doi.org/10.1007/s13369-017-2949-5

    Article  CAS  Google Scholar 

  2. Xhanari K, Wang Y, Yang Z, Finšgar M (2021) A review of recent advances in the inhibition of sweet corrosion. Chem Rec 21:1845–1875. https://doi.org/10.1002/tcr.202100072

    Article  CAS  PubMed  Google Scholar 

  3. Zhang QH, Jiang ZN, Li YY et al (2022) In-depth insight into the inhibition mechanism of the modified and combined amino acids corrosion inhibitors: “intramolecular synergism” vs.“intermolecular synergism.” Chem Eng J 437:135439. https://doi.org/10.1016/j.cej.2022.135439

    Article  ADS  CAS  Google Scholar 

  4. Askari M, Aliofkhazraei M, Ghaffari S, Hajizadeh A (2018) Film former corrosion inhibitors for oil and gas pipelines–A technical review. J Nat Gas Sci Eng 58:92–114. https://doi.org/10.1016/j.jngse.2018.07.025

    Article  CAS  Google Scholar 

  5. Shang Z, Zhu J (2021) Overview on plant extracts as green corrosion inhibitors in the oil and gas fields. J Mater Res Technol 15:5078–5094. https://doi.org/10.1016/j.jmrt.2021.10.095

    Article  CAS  Google Scholar 

  6. Tang R, Joshi GR, Zhao H et al (2020) The influence of electrodeposited Ni-Co alloy coating microstructure on CO2 corrosion resistance on X65 steel. Corros Sci 167:108485. https://doi.org/10.1016/j.corsci.2020.108485

    Article  CAS  Google Scholar 

  7. Li J, Sun C, Roostaei M et al (2021) Role of Ca2+ in the CO2 corrosion behavior and film characteristics of N80 steel and electroless Ni–P coating at high temperature and high pressure. Mater Chem Phys 267:124618. https://doi.org/10.1016/j.matchemphys.2021.124618

    Article  CAS  Google Scholar 

  8. Shamsa A, Barker R, Hua Y et al (2020) Performance evaluation of an imidazoline corrosion inhibitor in a CO2-saturated environment with emphasis on localised corrosion. Corros Sci 176:108916. https://doi.org/10.1016/j.corsci.2020.108916

    Article  CAS  Google Scholar 

  9. Shamsa A, Barker R, Hua Y et al (2021) Impact of corrosion products on performance of imidazoline corrosion inhibitor on X65 carbon steel in CO2 environments. Corros Sci 185:109423. https://doi.org/10.1016/j.corsci.2021.109423

    Article  CAS  Google Scholar 

  10. Zheng Z, Hu J, Eliaz N et al (2022) Mercaptopropionic acid-modified oleic imidazoline as a highly efficient corrosion inhibitor for carbon steel in CO2-saturated formation water. Corros Sci 194:109930. https://doi.org/10.1016/j.corsci.2021.109930

    Article  CAS  Google Scholar 

  11. Geng S, Hu J, Yu J et al (2022) Rosin imidazoline as an eco-friendly corrosion inhibitor for the carbon steel in CO2-containing solution and its synergistic effect with thiourea. J Mol Struct 1250:131778. https://doi.org/10.1016/j.molstruc.2021.131778

    Article  CAS  Google Scholar 

  12. Zhang QH, Hou BS, Xu N et al (2019) Effective inhibition on the corrosion of X65 carbon steel in the oilfield produced water by two Schiff bases. J Mol Liq 285:223–236. https://doi.org/10.1016/j.molliq.2019.04.072

    Article  CAS  Google Scholar 

  13. Chauhan DS, Quraishi MA, Sorour AA, Verma C (2022) A review on corrosion inhibitors for high-pressure supercritical CO2 environment: challenges and opportunities. J Pet Sci Eng 215:110695. https://doi.org/10.1016/j.petrol.2022.110695

    Article  CAS  Google Scholar 

  14. Zhao Q, Guo J, Cui G et al (2020) Chitosan derivatives as green corrosion inhibitors for P110 steel in a carbon dioxide environment. Colloids Surfaces B Biointerfaces 194:111150. https://doi.org/10.1016/j.colsurfb.2020.111150

    Article  CAS  PubMed  Google Scholar 

  15. Haruna K, Saleh TA (2022) Graphene oxide with dopamine functionalization as corrosion inhibitor against sweet corrosion of X60 carbon steel under static and hydrodynamic flow systems. J Electroanal Chem 920:116589. https://doi.org/10.1016/j.jelechem.2022.116589

    Article  CAS  Google Scholar 

  16. Zhang QH, Hou BS, Li YY et al (2021) Dextran derivatives as highly efficient green corrosion inhibitors for carbon steel in CO2-saturated oilfield produced water: experimental and theoretical approaches. Chem Eng J 424:130519. https://doi.org/10.1016/j.cej.2021.130519

    Article  CAS  Google Scholar 

  17. Berdimurodov E, Kholikov A, Akbarov K et al (2021) Novel bromide–cucurbit[7]uril supramolecular ionic liquid as a green corrosion inhibitor for the oil and gas industry. J Electroanal Chem 901:115794. https://doi.org/10.1016/j.jelechem.2021.115794

    Article  CAS  Google Scholar 

  18. El Ibrahimi B, Jmiai A, Bazzi L, El Issami S (2020) Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arab J Chem 13:740–771. https://doi.org/10.1016/j.arabjc.2017.07.013

    Article  CAS  Google Scholar 

  19. Zhao H, Zhang X, Ji L et al (2014) Quantitative structure-activity relationship model for amino acids as corrosion inhibitors based on the support vector machine and molecular design. Corros Sci 83:261–271. https://doi.org/10.1016/j.corsci.2014.02.023

    Article  CAS  Google Scholar 

  20. Li E, Liu S, Luo F, Yao P (2023) Amino acid imidazole ionic liquids as green corrosion inhibitors for mild steel in neutral media: synthesis, electrochemistry, surface analysis and theoretical calculations. J Electroanal Chem 944:117650. https://doi.org/10.1016/j.jelechem.2023.117650

    Article  CAS  Google Scholar 

  21. Kumar D, Jain N, Jain V, Rai B (2020) Amino acids as copper corrosion inhibitors: a density functional theory approach. Appl Surf Sci 514:145905. https://doi.org/10.1016/j.apsusc.2020.145905

    Article  CAS  Google Scholar 

  22. Zhu Y, Sun Q, Wang Y et al (2021) Molecular dynamic simulation and experimental investigation on the synergistic mechanism and synergistic effect of oleic acid imidazoline and L-cysteine corrosion inhibitors. Corros Sci 185:109414. https://doi.org/10.1016/j.corsci.2021.109414

    Article  CAS  Google Scholar 

  23. Zhang QH, Li YY, Zhu GY et al (2021) In-depth insight into the synergistic inhibition mechanism of S-benzyl-L-cysteine and thiourea on the corrosion of carbon steel in the CO2-saturated oilfield produced water. Corros Sci 192:109807. https://doi.org/10.1016/j.corsci.2021.109807

    Article  CAS  Google Scholar 

  24. Zhang QH, Li YY, Lei Y et al (2022) Comparison of the synergistic inhibition mechanism of two eco-friendly amino acids combined corrosion inhibitors for carbon steel pipelines in oil and gas production. Appl Surf Sci 583:152559. https://doi.org/10.1016/j.apsusc.2022.152559

    Article  CAS  Google Scholar 

  25. Zhu Y, Free ML, Yi G (2016) The effects of surfactant concentration, adsorption, aggregation, and solution conditions on steel corrosion inhibition and associated modeling in aqueous media. Corros Sci 102:233–250. https://doi.org/10.1016/j.corsci.2015.10.012

    Article  CAS  Google Scholar 

  26. Zhu Y, Free ML, Woollam R, Durnie W (2017) A review of surfactants as corrosion inhibitors and associated modeling. Prog Mater Sci 90:159–223. https://doi.org/10.1016/j.pmatsci.2017.07.006

    Article  CAS  Google Scholar 

  27. Tantawy AH, Soliman KA, Abd El-Lateef HM (2020) Novel synthesized cationic surfactants based on natural piper nigrum as sustainable-green inhibitors for steel pipeline corrosion in CO2–3.5%NaCl: DFT, Monte Carlo simulations and experimental approaches. J Clean Prod 250:119510. https://doi.org/10.1016/j.jclepro.2019.119510

    Article  CAS  Google Scholar 

  28. Wang X, Yang J, Chen X et al (2022) Synergistic inhibition properties and microstructures of self-assembled imidazoline and phosphate ester mixture for carbon steel corrosion in the CO2 brine solution. J Mol Liq 357:119140. https://doi.org/10.1016/j.molliq.2022.119140

    Article  CAS  Google Scholar 

  29. Desimone MP, Grundmeier G, Gordillo G, Simison SN (2011) Amphiphilic amido-amine as an effective corrosion inhibitor for mild steel exposed to CO2 saturated solution: polarization, EIS and PM-IRRAS studies. Electrochim Acta 56:2990–2998. https://doi.org/10.1016/j.electacta.2011.01.009

    Article  CAS  Google Scholar 

  30. Juárez EG, Mena-Cervantes VY, Vazquez-Arenas J et al (2018) Inhibition of CO2 corrosion via sustainable geminal zwitterionic compounds: effect of the length of the hydrocarbon chain from amines. ACS Sustain Chem Eng 6:17230–17238. https://doi.org/10.1021/acssuschemeng.8b04619

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, et al (2010) Gaussian 09, Revision B.01

  32. Studio D, Insight I (2009) Accelrys Software Inc. San Diego, CA 92121:

  33. Hou BS, Zhang QH, Li YY et al (2020) Influence of corrosion products on the inhibition effect of pyrimidine derivative for the corrosion of carbon steel under supercritical CO2 conditions. Corros Sci 166:108442. https://doi.org/10.1016/j.corsci.2020.108442

    Article  CAS  Google Scholar 

  34. Cen H, Wu C, Chen Z (2021) N, S Co-doped carbon coated MnS/MnO/Mn nanoparticles as a novel corrosion inhibitor for carbon steel in CO2-saturated NaCl solution. Colloids Surfaces A Physicochem Eng Asp 630:127528. https://doi.org/10.1016/j.colsurfa.2021.127528

    Article  CAS  Google Scholar 

  35. Taylor SR, Gileadi E (1995) Physical interpretation of the Warburg impedance. Corrosion 51:664–671. https://doi.org/10.5006/1.3293628

    Article  CAS  Google Scholar 

  36. Feng S, Li Y, Liu H et al (2020) Microbiologically influenced corrosion of carbon steel pipeline in shale gas field produced water containing CO2 and polyacrylamide inhibitor. J Nat Gas Sci Eng 80:103395. https://doi.org/10.1016/j.jngse.2020.103395

    Article  CAS  Google Scholar 

  37. Kinsella B, Tan YJ, Bailey S (1998) Electrochemical impedance spectroscopy and surface characterization techniques to study carbon dioxide corrosion product scales. Corrosion 54:835–842. https://doi.org/10.5006/1.3284803

    Article  CAS  Google Scholar 

  38. Ren X, Wang H, Wei Q et al (2021) Electrochemical behaviour of N80 steel in CO2 environment at high temperature and pressure conditions. Corros Sci 189:109619. https://doi.org/10.1016/j.corsci.2021.109619

    Article  CAS  Google Scholar 

  39. Belarbi Z, Dominguez Olivo JM, Farelas F et al (2019) Decanethiol as a corrosion inhibitor for carbon steels exposed to aqueous CO2. Corrosion 75:1246–1254. https://doi.org/10.5006/3233

    Article  Google Scholar 

  40. Barker R, Neville A, Limited SUK (2013) Evaluating inhibitor performance in CO2-saturated, erosion-corrosion environments. In: Corrosion. pp 79–87

  41. Pan C, Wang X, Behnamian Y et al (2020) Monododecyl phosphate film on LY12 aluminum alloy: pH-controlled self-assembly and corrosion resistance. J Electrochem Soc 167:161510. https://doi.org/10.1149/1945-7111/abd3bb

    Article  CAS  Google Scholar 

  42. Deng CM, **a DH, Zhang R et al (2023) On the localized corrosion of AA5083 in a simulated dynamic seawater/air interface—Part 2: effects of wetting time. Corros Sci 221:111367. https://doi.org/10.1016/j.corsci.2023.111367

    Article  CAS  Google Scholar 

  43. Solomon MM, Gerengi H, Kaya T, Umoren SA (2017) Performance evaluation of a chitosan/silver nanoparticles composite on St37 steel corrosion in a 15% HCl solution. ACS Sustain Chem Eng 5:809–820. https://doi.org/10.1021/acssuschemeng.6b02141

    Article  CAS  Google Scholar 

  44. Asaldoust S, Ramezanzadeh B (2020) Synthesis and characterization of a high-quality nanocontainer based on benzimidazole-zinc phosphate (ZP-BIM) tailored graphene oxides; a facile approach to fabricating a smart self-healing anti-corrosion system. J Colloid Interface Sci 564:230–244. https://doi.org/10.1016/j.jcis.2019.12.122

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Bommersbach P, Alemany-Dumont C, Millet JP, Normand B (2005) Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods. Electrochim Acta 51:1076–1084. https://doi.org/10.1016/j.electacta.2005.06.001

    Article  CAS  Google Scholar 

  46. López DA, Simison SN, De Sánchez SR (2005) Inhibitors performance in CO2 corrosion EIS studies on the interaction between their molecular structure and steel microstructure. Corros Sci 47:735–755. https://doi.org/10.1016/j.corsci.2004.07.010

    Article  CAS  Google Scholar 

  47. Solomon MM, Onyeachu IB, Njoku DI et al (2021) Adsorption and corrosion inhibition characteristics of 2-(chloromethyl)benzimidazole for C1018 carbon steel in a typical sweet corrosion environment: effect of chloride ion concentration and temperature. Colloids Surfaces A Physicochem Eng Asp 610:125638. https://doi.org/10.1016/j.colsurfa.2020.125638

    Article  CAS  Google Scholar 

  48. Farhadian A, Rahimi A, Safaei N et al (2020) A theoretical and experimental study of castor oil-based inhibitor for corrosion inhibition of mild steel in acidic medium at elevated temperatures. Corros Sci 175:108871. https://doi.org/10.1016/j.corsci.2020.108871

    Article  CAS  Google Scholar 

  49. Fernandes CM, Alvarez LX, dos Santos NE et al (2019) Green synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses. Corros Sci 149:185–194. https://doi.org/10.1016/j.corsci.2019.01.019

    Article  CAS  Google Scholar 

  50. Corrales-Luna M, Le Manh T, Romero-Romo M et al (2019) 1-Ethyl 3-methylimidazolium thiocyanate ionic liquid as corrosion inhibitor of API 5L X52 steel in H 2 SO 4 and HCl media. Corros Sci 153:85–99. https://doi.org/10.1016/j.corsci.2019.03.041

    Article  CAS  Google Scholar 

  51. Zhang W, Li HJ, Chen L et al (2020) Fructan from polygonatum cyrtonema Hua as an eco-friendly corrosion inhibitor for mild steel in HCl media. Carbohydr Polym 238:116216. https://doi.org/10.1016/j.carbpol.2020.116216

    Article  CAS  PubMed  Google Scholar 

  52. Bouklah M, Hammouti B, Lagrenée M, Bentiss F (2006) Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium. Corros Sci 48:2831–2842. https://doi.org/10.1016/j.corsci.2005.08.019

    Article  CAS  Google Scholar 

  53. Ye Y, Yang D, Chen H (2019) A green and effective corrosion inhibitor of functionalized carbon dots. J Mater Sci Technol 35:2243–2253. https://doi.org/10.1016/j.jmst.2019.05.045

    Article  ADS  CAS  Google Scholar 

  54. Olen L, Riggs J, Ray MH (1967) Temperature coefficient of corrosion inhibition. Corrosion 23:252–260. https://doi.org/10.5006/0010-9312-23.8.252

    Article  Google Scholar 

  55. Bentiss F, Lebrini M, Lagrenée M (2005) Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system. Corros Sci 47:2915–2931. https://doi.org/10.1016/j.corsci.2005.05.034

    Article  CAS  Google Scholar 

  56. Han P, Chen C, Li W et al (2018) Synergistic effect of mixing cationic and nonionic surfactants on corrosion inhibition of mild steel in HCl: experimental and theoretical investigations. J Colloid Interface Sci 516:398–406. https://doi.org/10.1016/j.jcis.2018.01.088

    Article  ADS  CAS  PubMed  Google Scholar 

  57. de Policarpi E, B, Spinelli A (2020) Application of Hymenaea stigonocarpa fruit shell extract as eco-friendly corrosion inhibitor for steel in sulfuric acid. J Taiwan Inst Chem Eng 116:215–222. https://doi.org/10.1016/j.jtice.2020.10.024

    Article  CAS  Google Scholar 

  58. Obot IB, Onyeachu IB, Umoren SA (2019) Alternative corrosion inhibitor formulation for carbon steel in CO2-saturated brine solution under high turbulent flow condition for use in oil and gas transportation pipelines. Corros Sci 159:108140. https://doi.org/10.1016/j.corsci.2019.108140

    Article  CAS  Google Scholar 

  59. Zhao J, Chen G (2012) The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution. Electrochim Acta 69:247–255. https://doi.org/10.1016/j.electacta.2012.02.101

    Article  CAS  Google Scholar 

  60. Wei L, Chen Z, Guo X (2017) Inhibition behavior of an imidazoline inhibitor for carbon steel in a supercritical CO2/H2O system. J Electrochem Soc 164:602–609. https://doi.org/10.1149/2.0151712jes

    Article  CAS  Google Scholar 

  61. Cen H, Cao J, Chen Z, Guo X (2019) 2-Mercaptobenzothiazole as a corrosion inhibitor for carbon steel in supercritical CO2-H2O condition. Appl Surf Sci 476:422–434. https://doi.org/10.1016/j.apsusc.2019.01.113

    Article  ADS  CAS  Google Scholar 

  62. Zhang QH, Hou BS, Zhang GA (2020) Inhibitive and adsorption behavior of thiadiazole derivatives on carbon steel corrosion in CO2-saturated oilfield produced water: effect of substituent group on efficiency. J Colloid Interface Sci 572:91–106. https://doi.org/10.1016/j.jcis.2020.03.065

    Article  ADS  CAS  PubMed  Google Scholar 

  63. López DA, Schreiner WH, De Sánchez SR, Simison SN (2004) The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO 2 corrosion: an XPS and SEM characterization. Appl Surf Sci 236:77–97. https://doi.org/10.1016/j.apsusc.2004.03.247

    Article  ADS  CAS  Google Scholar 

  64. Heuer JK, Stubbins JF (1999) An XPS characterization of FeCO3 films from CO2 corrosion. Corros Sci 41:1231–1243. https://doi.org/10.1016/S0010-938X(98)00180-2

    Article  CAS  Google Scholar 

  65. Zhang C, Duan H, Zhao J (2016) Synergistic inhibition effect of imidazoline derivative and L-cysteine on carbon steel corrosion in a CO2-saturated brine solution. Corros Sci 112:160–169. https://doi.org/10.1016/j.corsci.2016.07.018

    Article  CAS  Google Scholar 

  66. Delpeux S, Beguin F, Benoit R et al (1998) Fullerene core star-like polymers - 1. Preparation from fullerenes and monoazidopolyethers. Eur Polym J 34:905–915. https://doi.org/10.1016/S0014-3057(97)00225-5

    Article  CAS  Google Scholar 

  67. Nam ND, Bui QV, Mathesh M et al (2013) A study of 4-carboxyphenylboronic acid as a corrosion inhibitor for steel in carbon dioxide containing environments. Corros Sci 76:257–266. https://doi.org/10.1016/j.corsci.2013.06.048

    Article  CAS  Google Scholar 

  68. Olivares-Xometl O, Likhanova NV, Domínguez-Aguilar MA et al (2006) Surface analysis of inhibitor films formed by imidazolines and amides on mild steel in an acidic environment. Appl Surf Sci 252:2139–2152. https://doi.org/10.1016/j.apsusc.2005.03.178

    Article  ADS  CAS  Google Scholar 

  69. Wang C, Cao XL, Guo LL et al (2016) Effect of adsorption of catanionic surfactant mixtures on wettability of quartz surface. Colloids Surfaces A Physicochem Eng Asp 509:564–573. https://doi.org/10.1016/j.colsurfa.2016.09.057

    Article  CAS  Google Scholar 

  70. Tehrani MEHN, Ramezanzadeh M, Ramezanzadeh B (2021) Highly-effective/durable method of mild-steel corrosion mitigation in the chloride-based solution via fabrication of hybrid metal-organic film (MOF) generated between the active trachyspermum ammi bio-molecules-divalent zinc cations. Corros Sci 184:109383. https://doi.org/10.1016/j.corsci.2021.109383

    Article  CAS  Google Scholar 

  71. Zdziennicka A, Szymczyk K, Jańczuk B (2009) Correlation between surface free energy of quartz and its wettability by aqueous solutions of nonionic, anionic and cationic surfactants. J Colloid Interface Sci 340:243–248. https://doi.org/10.1016/j.jcis.2009.08.040

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Zdziennicka A, Jańczuk B, Wójcik W (2003) Wettability of polytetrafluoroethylene by aqueous solutions of two anionic surfactant mixtures. J Colloid Interface Sci 268:200–207. https://doi.org/10.1016/S0021-9797(03)00702-1

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Szymczyk K, Zdziennicka A, Jańczuk B, Wójcik W (2006) The wettability of polytetrafluoroethylene and polymethyl methacrylate by aqueous solution of two cationic surfactants mixture. J Colloid Interface Sci 293:172–180. https://doi.org/10.1016/j.jcis.2005.06.038

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Zhang L, Wang ZL, Li ZQ et al (2010) Wettability of a quartz surface in the presence of four cationic surfactants. Langmuir 26:18834–18840. https://doi.org/10.1021/la1036822

    Article  CAS  PubMed  Google Scholar 

  75. Wang D, Li Y, Chen B, Zhang L (2020) Novel surfactants as green corrosion inhibitors for mild steel in 15% HCl: experimental and theoretical studies. Chem Eng J 402:126219. https://doi.org/10.1016/j.cej.2020.126219

    Article  CAS  Google Scholar 

  76. Tan B, Zhang S, Liu H et al (2019) Corrosion inhibition of X65 steel in sulfuric acid by two food flavorants 2-isobutylthiazole and 1-(1,3-Thiazol-2-yl) ethanone as the green environmental corrosion inhibitors: combination of experimental and theoretical researches. J Colloid Interface Sci 538:519–529. https://doi.org/10.1016/j.jcis.2018.12.020

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Asfia MP, Rezaei M, Bahlakeh G (2020) Corrosion prevention of AISI 304 stainless steel in hydrochloric acid medium using garlic extract as a green corrosion inhibitor: electrochemical and theoretical studies. J Mol Liq 315:113679. https://doi.org/10.1016/j.molliq.2020.113679

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Projects of China National Key Research and Development Plan [grant number 2021YFE0107000]; the Liaoning Revitalization Talents Program [grant number XLYC1902053]; the National Natural Science Foundation in China (General Program) [grant number 52074339]; the Qingdao Postdoctoral Application Research Project [grant number QDBSH 20230101022]; and the FuShun Revitalization Talents Program [grant number FSYC202101001].

Author information

Authors and Affiliations

Authors

Contributions

XW contributed to writing—original draft, conception, experiment, investigation, data curation, and editing. JY contributed to supervision, resources, conception, supervision, writing—review. XC contributed to writing—review. YW contributed to the fund support. ZY contributed to the fund support. WD contributed to the fund support.

Corresponding authors

Correspondence to Jiang Yang or Xu Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 208 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yang, J., Chen, X. et al. Ecofriendly β-N-butyl amino propionic acid as green corrosion inhibitor for N80 steel in CO2-saturated brine water. J Mater Sci 59, 3604–3623 (2024). https://doi.org/10.1007/s10853-024-09375-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09375-0

Navigation