Log in

Pressure-induced phase transition and electronic properties of CdPX3 (X = S and Se) by first-principles calculation

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The two-dimensional (2D) transition metal thiophosphates family CdPS3 and CdPSe3 are supposed to explore pressure-relevant structural and electronic behaviors as support to build 2D spintronic devices. The pressure-induced phase transition and electronic properties of CdPX3 are investigated up to 40 GPa using first-principles calculation. CdPS3 undergoes reversible phase transitions at around 1.5 GPa and 25 GPa from C2/m structure to structure and then to \(P\overline{3} 1m\) structure, while the reversible phase transitions of CdPSe3 are found at approximately 13 GPa from \(R\overline{3}\) structure to \(P\overline{3} 1m\) structure, reflected in the lattice constant mutation and cell volume collapse. The computed metallization transition is found at about 25 GPa and 13 GPa owing to energy band closure for CdPS3 and CdPSe3, respectively. As anisotropy increases with pressure, the enhanced metallic property is accompanied by the inter- and intra-layer sliding atom pairs induced by phase transition. The paper is conducive to considering the phase transition and metallization of CdPX3-type family under extreme conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the article and supplementary material.

References

  1. Yun WS, Lee JD (2019) Single-layer CdPSe3: a promising thermoelectric material persisting in high temperatures. Appl Phys Lett 115:193105

    Article  Google Scholar 

  2. Gupta A, Sakthivel T, Seal S (2019) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126

    Article  Google Scholar 

  3. Zhao X, Song P, Wang C et al (2019) Engineering covalently bonded 2D layered materials by self-intercalation. Nature 581:171–177

    Article  Google Scholar 

  4. Du K, Wang X, Liu Y et al (2016) Weak van der waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10:1738–1743

    Article  CAS  Google Scholar 

  5. Shah NK, Kaphle GC, Karn AL, Limbu Y, Paudyal D (2022) Interplay of electronic structure, magnetism, strain, and defects in carbide MXenes. Vacuum 206:111489

    Article  CAS  Google Scholar 

  6. Yu X, Ren W (2023) 2D CdPS3-based versatile superionic conductors. Nat Commun 14:3998

    Article  CAS  Google Scholar 

  7. Susner MA, Chyasnavichyus M, McGuire MA, Ganesh P, Maksymovych P (2017) Metal thio- and selenophosphates as multifunctional van der Waals layered materials. Adv Mater 29:1602852

    Article  Google Scholar 

  8. Liu Y, Weiss NO, Duan X, Cheng HC, Huang Y, Duan X (2016) Van der Waals heterostructures and devices. Nat Rev Mater 1:16042

    Article  CAS  Google Scholar 

  9. Thanh TD, Chuong ND, Hien HV, Kshetri T, Tuan LH, Kim NH, Lee JH (2018) Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications. Prog Mater Sci 96:51–85

    Article  CAS  Google Scholar 

  10. Chittari BL, Park Y, Lee D, Han M, MacDonald AH, Hwang E, Jung J (2016) Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys Rev B 94:184428

    Article  Google Scholar 

  11. Tan J, Hu H, Cai B, Xu D, Ouyang G (2022) Instability of the magnetic state of MPX3 (M = Mn, Ni; X = S, Se) monolayers induced by strain and do**. Phys Rev B 106:195424

    Article  CAS  Google Scholar 

  12. Sun F, Yan X, Zhang Z, Guo Z, Yuan W (2023) Narrowing the optical gap of CdPS3 single crystal via chemical intercalation using liquid ammonia method. Solid State Commun 363:115116

    Article  CAS  Google Scholar 

  13. Qian X, Chen L, Yin L et al (2020) CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 370:596–600

    Article  CAS  Google Scholar 

  14. **ao T, Nagaoka Y, Wang X et al (2022) Nanocrystals with metastable high-pressure phases under ambient conditions. Science 377:870–874

    Article  CAS  Google Scholar 

  15. Li Y, Li Y, Zhang Q et al (2023) Electronic structure and photoconductivity properties of GaP under high pressure. J Mater Sci 58:3657–3669

    Article  CAS  Google Scholar 

  16. Yao X, Bai Y, ** C et al (2023) Anomalous polarization enhancement in a van der Waals ferroelectric material under pressure. Nat Commun 14:4301

    Article  CAS  Google Scholar 

  17. Royo M, Stengel M (2022) Lattice-mediated bulk flexoelectricity from first principles. Phys Rev B 105:064101

    Article  CAS  Google Scholar 

  18. Fukushima S, Kalia RK, Nakano A, Shimojo F, Vashishta P (2022) Thickness dependence of dielectric constant of alumina films based on first-principles calculations. Appl Phys Lett 121:062902

    Article  CAS  Google Scholar 

  19. Reed BW, Koski KJ (2022) Acoustic phonons and elastic stiffnesses from Brillouin scattering of CdPS3. J Appl Phys 131:165109

    Article  CAS  Google Scholar 

  20. Niu M, Cheng H, Li X et al (2022) Pressure-induced phase transitions in weak interlayer coupling CdPS3. Appl Phys Lett 120:233104

    Article  CAS  Google Scholar 

  21. Kuzmin A (2020) First-principles LCAO study of the low- and room-temperature phases of CdPS3. Low Temp Phys 46:1217–1222

    Article  CAS  Google Scholar 

  22. Jiang K, Shao X, Pavanello M (2021) Nonlocal and nonadiabatic Pauli potential for time-dependent orbital-free density functional theory. Phys Rev B 104:235110

    Article  CAS  Google Scholar 

  23. Kvaal S, Laestadius A, Tellgren E, Helgaker T (2021) Lower semicontinuity of the universal functional in paramagnetic current-density functional theory. J Phys Chem Lett 12:1421–1425

    Article  CAS  Google Scholar 

  24. Hammes-Schiffer S (2017) A conundrum for density functional theory. Science 355:28–29

    Article  CAS  Google Scholar 

  25. Ji Y, Lin P, Ren X, He L (2022) Reproducibility of hybrid density functional calculations for equation-of-state properties and band gaps. J Phys Chem A 126:5924–5931

    Article  CAS  Google Scholar 

  26. Tameh MS, Huang C (2020) Large impact of approximate exchange-correlation functionals on modeling the water gas shift reaction on copper. J Phys Chem C 124:22506–22520

    Article  CAS  Google Scholar 

  27. Zeng X, Chen H, He X et al (2022) Optical absorbance and band-gap engineering of two-dimensional locally phase-separated and homogeneous BCN monolayers. Diam Relat Mater 122:108801

    Article  CAS  Google Scholar 

  28. Jerome JW (2020) Consistency of local density approximations and quantum corrections for time-dependent quantum systems. Appl Anal 99:2571–2591

    Article  Google Scholar 

  29. Karasiev VV, Mihaylov DI, Hu SX (2022) Meta-GGA exchange-correlation free energy density functional to increase the accuracy of warm dense matter simulations. Phys Rev B 105:L081109

    Article  CAS  Google Scholar 

  30. Rani M, Ahmed N, Dragomir SS, Mohyud-Din ST, Khan I, Nisar KS (2021) Some newly explored exact solitary wave solutions to nonlinear inhomogeneous Murnaghan’s rod equation of fractional order. J Taibah Univ Sci 15:97–110

    Article  Google Scholar 

  31. Levamaki H, Tian LY, Vitos L, Ropo M (2019) An automated algorithm for reliable equation of state fitting of magnetic systems. Comp Mater Sci 156:121–128

    Article  Google Scholar 

  32. Burns SJ, Burns SP (2023) The shear contribution to the equation of state: A universal law for the elastic moduli of solids. Int J Solids Struct 279:112347

    Article  Google Scholar 

  33. Sanchez JJ (2021) Inelastic equation of state for solids. Comput Methods Appl M 375:113622

    Article  Google Scholar 

  34. Yang J, Tan LZ, Rappe AM (2018) Hybrid functional pseudopotentials. Phys Rev B 97:085130

    Article  CAS  Google Scholar 

  35. Shojaei MF, Pask JE, Medford AJ, Suryanarayana P (2023) Soft and transferable pseudopotentials from multi-objective optimization. Comput Phys Commun 283:108594

    Article  CAS  Google Scholar 

  36. Gudyma I, Maksymov A (2019) The cooperativity in 3D spin-crossover nanocrystals with ferromagnetic and antiferromagnetic surface. Appl Surf Sci 483:779–784

    Article  CAS  Google Scholar 

  37. Boix-Constant C, García-López V, Navarro-Moratalla E et al (2022) Strain switching in van der Waals heterostructures triggered by a spin-crossover metal-organic framework. Adv Mater 34:2110027

    Article  CAS  Google Scholar 

  38. **e KP, Ruan ZY, Chen XX, Yang J, Wu SG, Ni ZP, Tong ML (2022) Light-induced hidden multistability in a spin crossover metal-organic framework. Inorg Chem Front 9:1770–1776

    Article  CAS  Google Scholar 

  39. Yang D, Westreich P, Frindt RF (2002) Exfoliated CdPS3 single layers and restacked films. J Solid State Chem 166:421–425

    Article  CAS  Google Scholar 

  40. Zhang Y, Manke DR, Sharifzadeh S, Briseno AL, Ramasubramaniam A, Koski KJ (2017) The elastic constants of rubrene determined by Brillouin scattering and density functional theory. Appl Phys Lett 110:071903

    Article  Google Scholar 

  41. Mayorga-Martinez CC, Sofer Z, Sedmidubsky D, Huber S, Eng AYS, Pumera M (2017) Layered metal thiophosphite materials: magnetic, electrochemical, and electronic properties. ACS Appl Mater Interfaces 9:12563–12573

    Article  CAS  Google Scholar 

  42. Aoike M, Masubuchi T, Gonmori E et al (2008) Photoluminescence and magnetic properties of CdPS3 intercalated with rare earth ions. J Alloy Compd 451:470–472

    Article  CAS  Google Scholar 

  43. Kim M, Kim HS, Haule K, Vanderbilt D (2022) Orbital-selective Mott phase and non-fermi liquid in FePS3. Phys Rev B 105:L041108

    Article  CAS  Google Scholar 

  44. Zhan H, Zhang G, Yang C, Gu Y (2018) Breakdown of Hooke’s law at the nanoscale-2D material-based nanosprings. Nanoscale 10:18961–18968

    Article  CAS  Google Scholar 

  45. Bowick MJ, Kosmrlj A, Nelson DR, Sknepnek R (2017) Non-Hookean statistical mechanics of clamped graphene ribbons. Phys Rev B 95:104109

    Article  Google Scholar 

  46. Murray CE (2013) Equivalence of Kroner and weighted Voigt-Reuss models for x-ray stress determination. J Appl Phys 113:153509

    Article  Google Scholar 

  47. Villalobos-Portillo EE, Fuentes-Montero L, Montero-Cabrera ME, Burciaga-Valencia DC, Fuentes-Cobas LE (2019) Polycrystal piezoelectricity: revisiting the Voigt-Reuss-Hill approximation. Mater Res Express 6:115705

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 42005066, 11804249), the Natural Science Foundation of Tian** City (Grant Nos. 22JCQNJC01380, 18JCQNJC03700), the Open Project of State Key Laboratory of Superhard Materials (Jilin University) (Grant No. 202008), and the Tian** Research Innovation Project for Postgraduate Students (Grant No. 2022SKY128).

Author information

Authors and Affiliations

Authors

Contributions

YL contributed to data curation, formal analysis, funding acquisition, investigation, visualization, and writing—original draft. YL contributed to data curation and investigation. YL contributed to formal analysis and visualization. QZ contributed to formal analysis and resources. NS contributed to methodology and software. XL contributed to formal analysis, funding acquisition, and project administration. JS contributed to formal analysis, funding acquisition, and supervision. NX contributed to formal analysis, funding acquisition, and project administration. HL contributed to formal analysis and resources. YL contributed to conceptualization, formal analysis, funding acquisition, supervision, and writing—review and editing.

Corresponding author

Correspondence to Yuqiang Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All the authors declare that the manuscript does not have studies on human subjects, human data or tissue, or animals.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 669 KB).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Y., Liu, Y. et al. Pressure-induced phase transition and electronic properties of CdPX3 (X = S and Se) by first-principles calculation. J Mater Sci 58, 16144–16159 (2023). https://doi.org/10.1007/s10853-023-08998-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08998-z

Navigation