Log in

Grain boundary migration facilitated by phase transformation and twinning in face-centered cubic metals

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Migration of symmetric tilt grain boundaries (STGBs) in face-centered cubic (FCC) metals under shear loading is investigated in this work. The STGBs have a tilt axis of [110], and the angle \(\theta\) between the \((1\overline{1 }\overline{1 })\) invariant planes ranges from 8° up to 28° with a 2° increment. Interesting phase transformation and twinning are observed during GB migration in Cu, Ni but not in Al. The results show that for low values of \(\theta\), under shear loading, a hexagonal close-packed (HCP) phase is formed along the original GB and the HCP phase grows via shear coupling of one of the two interfaces between the HCP and the FCC grain. As \(\theta\) increases, both interfaces between the HCP and the grains become mobile and the HCP region traverses and transforms the lattice of one grain into the other. Thus, shear coupling is accomplished and facilitated through FCC → HCP → FCC phase transformations. As \(\theta\) further increases to 18° and greater, instead of FCC → HCP phase transformation, a {111} twin is formed along the original GB. The twin expands via shear coupling of the new GB between the twin and the FCC grain. Lattice correspondences are carefully analyzed for the phase transformation and twinning. The analyses indicate that the mobility of GBs is predominantly determined by how readily lattice transformation can be accomplished. The lattice correspondence in HCP twinning modes provide key insight on the observed GB migration behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Data and code availability

The original data of this work are available from the corresponding author (binl@iastate.edu) upon request.

References

  1. Cahn JW, Mishin Y, Suzuki A (2006) Coupling grain boundary motion to shear deformation. Acta Mater 54:4953–4975

    Article  CAS  Google Scholar 

  2. Molodov DA, Gorkaya T, Gottstein G (2011) Dynamics of grain boundaries under applied mechanical stress. J Mater Sci 46:4318–4326. https://doi.org/10.1007/s10853-010-5233-6

    Article  CAS  Google Scholar 

  3. Molodov DA, Gorkaya T, Gottstein G (2011) Migration of the Σ7 tilt grain boundary in Al under an applied external stress. Scr Mater 65:990–993

    Article  CAS  Google Scholar 

  4. Fukutomi H, Kamijo T (1985) Grain boundary sliding-migration of aluminum 〈110〉Σ11 {113} symmetric tilt coincidence grain boundary and its interpretation based on the motion of perfect DSC dislocations. Scr Metall 19:195–197

    Article  CAS  Google Scholar 

  5. Cahn JW, Mishin Y, Suzuki A (2006) Duality of dislocation content of grain boundaries. Philos Mag 86:3965–3980

    Article  CAS  Google Scholar 

  6. Caillard D, Mompiou F, Legros M (2009) Grain-boundary shear-migration coupling. II. Geometrical model for general boundaries. Acta Mater 57:2390–2402

    Article  CAS  Google Scholar 

  7. Deng Y, Deng C (2017) Size and rate dependent grain boundary motion mediated by disconnection nucleation. Acta Mater 131:400–409

    Article  CAS  Google Scholar 

  8. Han J, Thomas SL, Srolovitz DJ (2018) Grain-boundary kinetics: a unified approach. Prog Mater Sci 98:386–476

    Article  Google Scholar 

  9. Molodov KD, Molodov DA (2018) Grain boundary mediated plasticity: on the evaluation of grain boundary migration-shear coupling. Acta Mater 153:336–353

    Article  CAS  Google Scholar 

  10. Brandon DG (1966) The structure of high-angle grain boundaries. Acta Metall 14:1479–1484

    Article  CAS  Google Scholar 

  11. Bilby BA, Crocker AG (1965) The theory of the crystallography of deformation twinning. Proc R Soc Lond Ser Math Phys Sci 288:240–255

    CAS  Google Scholar 

  12. Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–157

    Article  Google Scholar 

  13. Li B, Leung J (2021) Lattice transformation in grain boundary migration via shear coupling and transition to sliding in face-centered-cubic copper. Acta Mater 215:117127

    Article  CAS  Google Scholar 

  14. Homer ER, Foiles SM, Holm EA, Olmsted DL (2013) Phenomenology of shear-coupled grain boundary motion in symmetric tilt and general grain boundaries. Acta Mater 61:1048–1060

    Article  CAS  Google Scholar 

  15. Wan L, Wang S (2009) Shear response of the Σ11, 〈110〉{131} symmetric tilt grain boundary studied by molecular dynamics. Model Simul Mater Sci Eng 17:045008

    Article  Google Scholar 

  16. Wan L, Wang S (2010) Shear response of the Σ9 〈110〉{221} symmetric tilt grain boundary in fcc metals studied by atomistic simulation methods. Phys Rev B 82:214112

    Article  Google Scholar 

  17. Daw MS, Baskes MI (1983) Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50:1285–1288

    Article  CAS  Google Scholar 

  18. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453

    Article  CAS  Google Scholar 

  19. Mishin Y, Mehl MJ, Papaconstantopoulos DA et al (2001) Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63:224106

    Article  Google Scholar 

  20. Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B 59:3393–3407

    Article  CAS  Google Scholar 

  21. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  CAS  Google Scholar 

  22. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  23. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  24. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18:015012

    Article  Google Scholar 

  25. Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91:4950–4963

    Article  CAS  Google Scholar 

  26. Rittner JD, Seidman DN, Merkle KL (1996) Grain-boundary dissociation by the emission of stacking faults. Phys Rev B 53:R4241–R4244

    Article  CAS  Google Scholar 

  27. Christian JW (2002) The theory of transformations in metals and alloys. Newnes

    Google Scholar 

  28. Niewczas M (2010) Lattice correspondence during twinning in hexagonal close-packed crystals. Acta Mater 58:5848–5857

    Article  CAS  Google Scholar 

  29. Song SG, Gray GT (1995) Transmission electron microscopy examination and analysis of an anomalous stacking fault in h.c.p. metals. Philos Mag A 71:263–274

    Article  CAS  Google Scholar 

  30. Zinkle SJ, Seitzman LE, Wolfer WG (1987) I. Energy calculations for pure metals. Philos Mag A 55:111–125

    Article  CAS  Google Scholar 

  31. Varvenne C, Mackain O, Clouet E (2014) Vacancy clustering in zirconium: an atomic-scale study. Acta Mater 78:65–77

    Article  CAS  Google Scholar 

  32. Wu XL, Li B, Ma E (2007) Vacancy clusters in ultrafine grained Al by severe plastic deformation. Appl Phys Lett 91:141908

    Article  Google Scholar 

  33. Hirth JP, Lothe J (1983) Theory of dislocations, 2nd edn. Krieger Publishing Company

    Google Scholar 

  34. Zhang XY, Li B, Liu Q (2015) Non-equilibrium basal stacking faults in hexagonal close-packed metals. Acta Mater 90:140–150

    Article  CAS  Google Scholar 

  35. Li B, Sun Q, Zhang XY (2021) Lattice correspondence analysis on the formation mechanism for partial stacking faults in hexagonal close-packed metals. Comput Mater Sci 198:110684

    Article  CAS  Google Scholar 

  36. Sun Q, Zhang Q, Li B et al (2017) Non-dislocation-mediated basal stacking faults inside {1011}〈1012〉 twins. Scr Mater 141:85–88

    Article  CAS  Google Scholar 

  37. Zhou B, Sui M (2019) High density stacking faults of {1011} compression twin in magnesium alloys. J Mater Sci Technol 35:2263–2268

    Article  CAS  Google Scholar 

  38. Li B, Ma E (2009) Zonal dislocations mediating twinning in magnesium. Acta Mater 57:1734–1743

    Article  CAS  Google Scholar 

  39. Minonishi Y, Ishioka S, Koiwa M, Mobozumi S (1982) The structure of {1121} twin boundaries in H.C.P. crystals. Phys Status Solidi A 71:253–258

    Article  CAS  Google Scholar 

  40. Li B, El Kadiri H, Horstemeyer MF (2012) Extended zonal dislocations mediating twinning in titanium. Philos Mag 92:1006–1022

    Article  CAS  Google Scholar 

  41. Li J, Sui M, Li B (2021) A half-shear-half-shuffle mechanism and the single-layer twinning dislocation for {1122}〈1123〉 mode in hexagonal close-packed titanium. Acta Mater 216:117150

    Article  CAS  Google Scholar 

  42. Chen P, Ombogo J, Li B (2020) Dislocation ↔ twin transmutations during interaction between prismatic slip and {1011} twin in magnesium. Acta Mater 186:291–307

    Article  CAS  Google Scholar 

  43. Song SG, Gray GT III (1995) Structural interpretation of the nucleation and growth of deformation twins in Zr and Ti—I. Application of the coincidence site lattice (CSL) theory to twinning problems in h.c.p. structures. Acta Metall Mater 43:2325–2337

    Article  CAS  Google Scholar 

  44. Song SG, Gray GT III (1995) Structural interpretation of the nucleation and growth of deformation twins in Zr and Ti—II. Tem study of twin morphology and defect reactions during twinning. Acta Metall Mater 43:2339–2350

    Article  CAS  Google Scholar 

  45. Li B, Ma E (2009) Atomic shuffling dominated mechanism for deformation twinning in magnesium. Phys Rev Lett 103:035503

    Article  CAS  Google Scholar 

  46. Li B, Zhang XY (2016) Twinning with zero twinning shear. Scr Mater 125:73–79

    Article  CAS  Google Scholar 

  47. Li B, Zhang XY (2014) Global strain generated by shuffling-dominated twinning. Scr Mater 71:45–48

    Article  CAS  Google Scholar 

  48. Hirth JP, Wang J, Tomé CN (2016) Disconnections and other defects associated with twin interfaces. Prog Mater Sci 83:417–471

    Article  Google Scholar 

  49. Dang K, Wang S, Gong M et al (2020) Formation and stability of long basal-prismatic facets in Mg. Acta Mater 185:119–128

    Article  CAS  Google Scholar 

  50. Chen K, Han J, Thomas SL, Srolovitz DJ (2019) Grain boundary shear coupling is not a grain boundary property. Acta Mater 167:241–247

    Article  CAS  Google Scholar 

  51. Combe N, Mompiou F, Legros M (2016) Disconnections kinks and competing modes in shear-coupled grain boundary migration. Phys Rev B 93:024109

    Article  Google Scholar 

  52. Yoo MH (1981) Slip, twinning, and fracture in hexagonal close-packed metals. Metall Trans A 12:409–418

    Article  CAS  Google Scholar 

  53. Liu B-Y, Zhang Z, Liu F et al (2022) Rejuvenation of plasticity via deformation graining in magnesium. Nat Commun 13:1060

    Article  CAS  Google Scholar 

  54. Liu B-Y, Liu F, Yang N et al (2019) Large plasticity in magnesium mediated by pyramidal dislocations. Science 365:73–75

    Article  CAS  Google Scholar 

  55. Kou Z, Yang Y, Yang L et al (2019) In situ atomic-scale observation of a novel lattice reorienting process in pure Ti. Scr Mater 166:144–148

    Article  CAS  Google Scholar 

  56. Chen P, Wang F, Li B (2019) Transitory phase transformations during 1012 twinning in titanium. Acta Mater 171:65–78

    Article  CAS  Google Scholar 

  57. Chen P, Wang F, Li B (2019) Misfit strain induced phase transformation at a basal/prismatic twin boundary in deformation of magnesium. Comput Mater Sci 164:186–194

    Article  CAS  Google Scholar 

  58. He Y, Li B, Wang C, Mao SX (2020) Direct observation of dual-step twinning nucleation in hexagonal close-packed crystals. Nat Commun 11:2483

    Article  CAS  Google Scholar 

  59. Mahajan S, Chin GY (1973) Formation of deformation twins in f.c.c. crystals. Acta Metall 21:1353–1363

    Article  CAS  Google Scholar 

  60. Li B, Cao BY, Ramesh KT, Ma E (2009) A nucleation mechanism of deformation twins in pure aluminum. Acta Mater 57:4500–4507

    Article  CAS  Google Scholar 

  61. Kibey S, Liu JB, Johnson DD, Sehitoglu H (2007) Predicting twinning stress in fcc metals: linking twin-energy pathways to twin nucleation. Acta Mater 55:6843–6851

    Article  CAS  Google Scholar 

  62. Tadmor EB, Bernstein N (2004) A first-principles measure for the twinnability of FCC metals. J Mech Phys Solids 52:2507–2519

    Article  CAS  Google Scholar 

  63. Li BQ, Sui ML, Li B et al (2009) Reversible twinning in pure aluminum. Phys Rev Lett 102:205504

    Article  CAS  Google Scholar 

  64. Vítek V (1968) Intrinsic stacking faults in body-centred cubic crystals. Philos Mag 18:773–786

    Article  Google Scholar 

  65. Rodney D, Ventelon L, Clouet E et al (2017) Ab initio modeling of dislocation core properties in metals and semiconductors. Acta Mater 124:633–659

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.L. gratefully thanks the support from National Science Foundation, USA, under grant number CMMI-2016263 and 2032483.

Author information

Authors and Affiliations

Authors

Contributions

BL contributes to the design and execution of simulations, analyses, manuscript writing; KFC contributes to the simulations and analyses.

Corresponding author

Correspondence to Bin Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest or competing interests.

Ethical approval

No human tissue is involved in this work.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10956 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Chen, K. Grain boundary migration facilitated by phase transformation and twinning in face-centered cubic metals. J Mater Sci 58, 14740–14757 (2023). https://doi.org/10.1007/s10853-023-08863-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08863-z

Navigation