Log in

Lead-free X8R-type 0.92Ba0.8Sr0.2TiO3-0.08Bi(Mg0.5Zr0.5)O3 dielectric energy-storage ceramics for pulsed power capacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dielectric ceramic capacitors, as one kind of important electrical energy-storage device, have been widely used because of their high-power density and low cost. It is a key challenge and of great significance to develop dielectric ceramic capacitors with high energy-storage density within a wide operate temperature range. In this work, the effect of the Bi(Mg0.5Zr0.5)O3 addition on the dielectric and energy-storage properties of lead-free Ba0.8Sr0.2TiO3 ceramics was systematically studied. It can be found that with increasing Bi(Mg0.5Zr0.5)O3 content, an increase in dielectric temperature stability as a result of the addition of Bi(Mg0.5Zr0.5)O3 can accompany the formation of the long-range ordered ferroelectric domain into polar nanoregions and also conform to a decrease in remanent polarization and an increase in energy-storage properties. As a result, for the composition 0.92Ba0.8Sr0.2TiO3-0.08Bi(Mg0.5Zr0.5)O3, a stable dielectric constant in a temperature range of −100–151 °C was achieved. Furthermore, a large recoverable energy-storage density value (3.44 J/cm3) and a high-power density value (541 MW/cm3) were obtained simultaneously in the above ceramic composition. All these features suggest that the 0.92Ba0.8Sr0.2TiO3-0.08Bi(Mg0.5Zr0.5)O3 ceramics might be ideal materials for potential applications of high energy-storage capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

Data supporting the findings of this work are available from the corresponding author, R.Z. Zuo, upon request.

References

  1. Hui KZ, Chen LL, Cen ZY, Zhao PY, Yu Y, Guo LM, Wang XH, Li LT (2021) KNN based high dielectric constant X9R ceramics with fine grain structure and energy storage ability. J Am Ceram Soc 104:5815–5825. https://doi.org/10.1111/jace.17970

    Article  CAS  Google Scholar 

  2. Cui CW, Pu YP, Li X, Cui YF, Liu G (2018) High energy storage density of temperature-stable X9R ceramics. Mater Res Bull 105:114–120. https://doi.org/10.1016/j.materresbull.2018.04.043

    Article  CAS  Google Scholar 

  3. Li TY, Qiao ZL, Zuo RZ (2022) X9R-type Ag1-3xBixNbO3 based lead-free dielectric ceramic capacitors with excellent energy-storage properties. Ceram Int 48:2533–2537. https://doi.org/10.1016/j.ceramint.2021.10.035

    Article  CAS  Google Scholar 

  4. Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossrtti GA, Rodel J (2017) BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl Phys Rev 4:041305. https://doi.org/10.1063/1.4990046

    Article  CAS  Google Scholar 

  5. Wang T, Hao H, Liu MY, Zhou DD, Yao ZH, Cao MH, Liu HX (2015) X9R BaTiO3-based dielectric ceramics with multilayer core-shell structure produced by polymer-network gel coating method. J Am Ceram Soc 98:690–693. https://doi.org/10.1111/jace.13479

    Article  CAS  Google Scholar 

  6. Wang S, Zhang SR, Zhou XH, Li B, Chen Z (2006) Investigation on dielectric properties of BaTiO3 co-doped with Ni and Nb. Mater Lett 60:909–911. https://doi.org/10.1016/j.matlet.2005.10.043

    Article  CAS  Google Scholar 

  7. Chen XL, Huang GS, Ma DD, Liu GF, Zhou HF (2017) High thermal stability and low dielectric loss of BaTiO3-Bi(Li1/3Zr2/3)O3 solid solution. Ceram Int 43:926–929. https://doi.org/10.1016/j.ceramint.2016.10.099

    Article  CAS  Google Scholar 

  8. Zeb A, Milne SJ (2014) Temperature-stable dielectric properties from −20 °C to 430 °C in the system BaTiO3-Bi(Mg0.5Zr0.5)O3. J Eur Ceram Soc 34:3159–3166. https://doi.org/10.1016/j.jeurceramsoc.2014.04.047

    Article  CAS  Google Scholar 

  9. Cao WJ, Li TY, Liang C, Wang CC (2022) Design of high energy-storage properties in eco-friendly AgNbO3-based ceramics via two-step sintering method and tuning phase boundary. J Mater Sci 57:21000–21008. https://doi.org/10.1007/s10853-022-07964-5

    Article  CAS  Google Scholar 

  10. Chen LL, Hui KZ, Wang HX, Zhao PY, Li LT, Wang XH (2019) Effects of Ho2O3 do** and sintering temperature on the core–shell structure of X9R Nb-modified BaTiO3-(Bi0.5Na0.5)TiO3 ceramics. J Eur Ceram Soc 39:3710–3715. https://doi.org/10.1016/j.jeurceramsoc.2019.05.041

    Article  CAS  Google Scholar 

  11. Li XX, Chen XL, Yan X, Zhou HF, Liu XB, Li X, Sun J (2018) Excellent thermal stability and low dielectric loss of (Ba1-xBi0.5xSr0.5x)(Ti1-xBi0.5xZr0.5x)O3 solid solution ceramics in a broad temperature range applied in X8R. Appl Phys A 124:771. https://doi.org/10.1007/s00339-018-2194-0

    Article  CAS  Google Scholar 

  12. Nurmi K, Jantunen H, Juuti J (2019) The effect of titanium excess and deficiency on the microstructure and dielectric properties of lanthanum doped Ba0.55Sr0.45TiO3 with colossal permittivity. J Eur Ceram Soc 39:1110–1115. https://doi.org/10.1016/j.jeurceramsoc.2018.12.039

    Article  CAS  Google Scholar 

  13. Liang RH, Zhou ZY, Dong XL, Wang GS, Gao F, Hu ZG, Jiang K (2015) Enhanced dielectric tunability of Ba0.55Sr0.45TiO3–ZnAl2O4 composite ceramic. Ceram Int 41:S551–S556. https://doi.org/10.1016/j.ceramint.2015.03.204

    Article  CAS  Google Scholar 

  14. Chen L, Yu HF, Wu J, Deng SQ, Liu H, Zhu LF, Qi H, Chen J (2023) Large energy capacitive high-entropy lead-free ferroelectrics. Nano-Micro Lett 15:65. https://doi.org/10.1007/s40820-023-01036-2

    Article  Google Scholar 

  15. Cao WJ, Lin RJ, Chen PF, Li F, Ge BH, Song DS, Zhang J, Cheng ZX, Wang CC (2022) Phase and band structure engineering via linear additive in NBT-ST for excellent energy storage performance with superior thermal stability. ACS Appl Mater Interfaces 14:54051–54062. https://doi.org/10.1021/acsami.2c17170

    Article  CAS  Google Scholar 

  16. Li TY, Jiang XW, Li J, **e AW, Fu J (2022) Zuo RZ (2022) Ultrahigh energy-storage performances in lead-free Na0.5Bi0.5TiO3-based relaxor antiferroelectric ceramics through a synergistic design strategy. ACS Appl Mater Interfaces 14:22263–22269. https://doi.org/10.1021/acsami.2c01287

    Article  CAS  Google Scholar 

  17. Yadav AK, Fan HQ, Yan BB, Wang C, Ma JW, Zhang MC, Wang WJ, Dong WQ, Wang SR (2020) Enhanced storage energy density and fatigue free properties for 0.94Bi0.50(Na0.78K0.22)0.50Ti1-x(Al0.50Nb0.50)xO3-0.06BaZrO3 ceramics. Ceram Int 46:17044–17052. https://doi.org/10.1016/j.ceramint.2020.03.292

    Article  CAS  Google Scholar 

  18. Liu JK, Ding YQ, Li CY, Bai WF, Zheng P, Wu ST, Zhang JJ, Pan ZB, Zhai JW (2023) A synergistic two-step optimization design enables high capacitive energy storage in lead-free Sr0.7Bi0.2TiO3-based relaxor ferroelectric ceramics. J Mater Chem A 11:609–620. https://doi.org/10.1039/d2ta08074e

    Article  CAS  Google Scholar 

  19. Li TY, Chen PF, Li F, Wang CC (2021) Energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3. Chem Eng J 406:127151. https://doi.org/10.1016/j.cej.2020.127151

    Article  CAS  Google Scholar 

  20. Jain A, Wang YG, Guo H (2020) Microstructural properties and ultrahigh energy storage density in Ba0.9Ca0.1TiO3-NaNb0.85Ta0.15O3 relaxor ceramics. Ceram Int 46:24333–24346. https://doi.org/10.1016/j.ceramint.2020.06.215

    Article  CAS  Google Scholar 

  21. Wang Q, Gong PM, Wang CM (2020) High recoverable energy storage density and large energy efficiency simultaneously achieved in BaTiO3-Bi(Zn1/2Zr1/2)O3 relaxor ferroelectrics. Ceram Int 46:22452–22459. https://doi.org/10.1016/j.ceramint.2020.06.003

    Article  CAS  Google Scholar 

  22. Si F, Tang B, Fang ZX, Li H, Zhang SR (2019) Enhanced energy storage and fast charge–discharge properties of (1–x) BaTiO3-xBi(Ni1/2Sn1/2)O3 relaxor ferroelectric ceramics. Ceram Int 45:17580–17590. https://doi.org/10.1016/j.ceramint.2019.05.323

    Article  CAS  Google Scholar 

  23. Li WB, Zhou D, Liu WF, Su JZ, Hussain F, Wang DW, Wang G, Lu ZL, Wang QP (2021) High-temperature BaTiO3-based ternary dielectric multilayers for energy storage applications with high efficiency. Chem Eng J 414:128760. https://doi.org/10.1016/j.cej.2021.128760

    Article  CAS  Google Scholar 

  24. Uchino K, Nomura S (1982) Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectr Lett 44:55–61. https://doi.org/10.1080/00150198208260644

    Article  CAS  Google Scholar 

  25. Zhao NS, Fan HQ, Ren XH, Ma JW, Bao J, Guo YJ, Zhou YY (2018) Dielectric, conductivity and piezoelectric properties in (0.67-x)BiFeO3-0.33BaTiO3-xSrZrO3 ceramics. Ceram Int 44:18821–18827. https://doi.org/10.1016/j.ceramint.2018.07.116

    Article  CAS  Google Scholar 

  26. Zhao JH, Bao SH, Tang LM, Shen YH, Su Z, Yang F, Liu JJ, Pan ZB (2022) Improved energy storage performances of lead-free BiFeO3-based ceramics via do** Sr0.7La0.2TiO3. J Alloy Compd 898:162795. https://doi.org/10.1016/j.jallcom.2021.162795

    Article  CAS  Google Scholar 

  27. Zeng MS, Liu JS, Li HQ, Zhang SR, Zhang WL (2022) High energy storage efficiency and fast discharge property of temperature stabilized Ba0.4Sr0.6TiO3-Bi(Mg0.5Ti0.5)O3 ceramics. Ceram Int 48:23518–23526. https://doi.org/10.1016/j.ceramint.2022.04.348

    Article  CAS  Google Scholar 

  28. Wang J, Li TY, Jiang XW, Zhou C, Xu YJ, Shi RJ, Liu LQ, Chu BJ, Zhao Z, Zuo RZ (2022) An alternative way to design excellent energy-storage properties in Na0.5Bi0.5TiO3-based lead-free system by constructing relaxor dielectric composites. J Eur Ceram Soc 42:6512–6517. https://doi.org/10.1016/j.jeurceramsoc.2022.07.025

    Article  CAS  Google Scholar 

  29. Ding YQ, Li P, He JT, Que WJ, Bai WF, Zheng P, Zhang JJ, Zhai JW (2022) Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO3-based relaxor ferroelectrics by ion selective engineering. Compos Part B Eng 230:109493. https://doi.org/10.1016/j.compositesb.2021.109493

    Article  CAS  Google Scholar 

  30. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297. https://doi.org/10.1115/1.4010337

    Article  Google Scholar 

  31. Dai ZH, Zhang FB, Wang SB, Lei Y, Liu Y, Chen H, Pan Y, Ding XD (2022) High energy storage properties for BiMg0.5Ti0.5O3-modified KNN ceramics under low electric fields. J Mater Sci 57:15919–15928. https://doi.org/10.1007/s10853-022-07636-4

    Article  CAS  Google Scholar 

  32. Cao WJ, Li TY, Chen PF, Wang CC (2021) Outstanding energy storage performance of Na0.5Bi0.5TiO3-BaTiO3-(Sr0.85Bi0.1)(Mg1/3Nb2/3)O3 lead-free ceramics. ACS Appl Energy Mater 4:9362–9367. https://doi.org/10.1021/acsaem.1c01566

    Article  CAS  Google Scholar 

  33. Luo NN, Han K, Cabral MJ, Liao XZ, Zhang SJ, Liao CZ, Zhang GZ, Chen XY, Feng Q, Li JF, Wei YZ (2020) Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nat Commun 11:4824. https://doi.org/10.1038/s41467-020-18665-5

    Article  CAS  Google Scholar 

  34. Li TY, Cao WJ, Chen PF, Wang JS, Wang CC (2021) Effects of sintering method on the structural, dielectric and energy storage properties of AgNbO3 lead-free antiferroelectric ceramics. J Mater Sci 56:13499–13508. https://doi.org/10.1007/s10853-021-06148-x

    Article  CAS  Google Scholar 

  35. Wu YC, Fan YZ, Liu NT, Peng P, Zhou MX, Yan SG, Cao F, Dong XL, Wang GS (2019) Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications. J Mater Chem C 7:6222–6230. https://doi.org/10.1039/c9tc01239g

    Article  CAS  Google Scholar 

  36. Yao Y, Li Y, Sun NN, Du JH, Li XW, Zhang LW, Zhang QW, Hao XH (2018) Enhanced dielectric and energy-storage properties in ZnO-doped 0.9(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-0.1NaNbO3 ceramics. Ceram Int 44:5961–5966. https://doi.org/10.1016/j.ceramint.2017.12.174

    Article  CAS  Google Scholar 

  37. Pan ZB, Hu D, Zhang Y, Liu JJ, Shen B, Zhai JW (2019) Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J Mater Chem C 7:4072–4078. https://doi.org/10.1039/c9tc00087a

    Article  CAS  Google Scholar 

  38. Zhang L, Pu YP, Chen M, Zhuo FP, Dietz C, Frömling T (2021) Decreasing polar-structure size: achieving superior energy storage properties and temperature stability in Na0.5Bi0.5TiO3-based ceramics for low electric field and high-temperature applications. J Eur Ceram Soc 41:5890–5899. https://doi.org/10.1016/j.jeurceramsoc.2021.05.036

    Article  CAS  Google Scholar 

  39. Zhao P, Tang B, Fang ZX, Si F, Yang CT, Zhang SR (2021) Improved dielectric breakdown strength and energy storage properties in Er2O3 modified Sr0.35Bi0.35K0.25TiO3. Chem Eng J 403:126290. https://doi.org/10.1016/j.cej.2020.126290

    Article  CAS  Google Scholar 

  40. Xu R, Xu Z, Feng YJ, Jian JJ, Huang D (2016) Energy storage and release properties of Sr-doped (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. Ceram Int 42:12875–12879. https://doi.org/10.1016/j.ceramint.2016.05.053

    Article  CAS  Google Scholar 

  41. Cao L, Yuan Y, Li EZ, Zhang SR (2021) Relaxor regulation and improvement of energy storage properties of Sr2NaNb5O15-based tungsten bronze ceramics through B-site substitution. Chem Eng J 421:127846. https://doi.org/10.1016/j.cej.2020.127846

    Article  CAS  Google Scholar 

  42. Wu LL, Zhang JJ, Du HW, Chen JF, Yu HA, Liu YP, Wang JY, Zhou Y, Yao YX, Zhai JW (2022) Chemical nature of the enhanced energy storage in A-site defect engineered Bi0.5Na0.5TiO3-based relaxor ferroelectrics. J Alloy Compd 905:164183. https://doi.org/10.1016/j.jallcom.2022.164183

    Article  CAS  Google Scholar 

  43. Shi P, Wang XJ, Lou XJ, Zhou C, Liu QD, He LQ, Yang S, Zhang XX (2021) Significantly enhanced energy storage properties of Nd3+ doped AgNbO3 lead-free antiferroelectric ceramics. J Alloy Compd 877:160162. https://doi.org/10.1016/j.jallcom.2021.160162

    Article  CAS  Google Scholar 

  44. Zhou MX, Liang RH, Zhou ZY, Dong XL (2018) Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy. J Mater Chem A 6:17896–17904. https://doi.org/10.1039/c8ta07303a

    Article  CAS  Google Scholar 

  45. Xu SD, Hao R, Yan Z, Hou ST, Peng ZH, Wu D, Liang PF, Chao XL, Wei LL, Yang ZP (2022) Enhanced energy storage properties and superior thermal stability in SNN-based tungsten bronze ceramics through substitution strategy. J Eur Ceram Soc 42:2781–2788. https://doi.org/10.1016/j.jeurceramsoc.2022.02.005

    Article  CAS  Google Scholar 

  46. Jiang Y, Zhu CQ, Zhao PY, Bi K, Liu JM, Guo LM, Wang XH, Li LT (2021) Excellent energy storage performance of NaNbO3-based antiferroelectric ceramics with ultrafast charge/discharge rate. J Eur Ceram Soc 41:6465–6473. https://doi.org/10.1016/j.jeurceramsoc.2021.06.033

    Article  CAS  Google Scholar 

  47. Wang W, Zhang LY, Li C, Alikin DO, Shur VY, Wei XY, Gao F, Du HL, ** L (2022) Effective strategy to improve energy storage properties in lead-free (Ba0.8Sr0.2)TiO3-Bi(Mg0.5Zr0.5)O3 relaxor ferroelectric ceramics. Chem Eng J 446:137389. https://doi.org/10.1016/j.cej.2022.137389

    Article  CAS  Google Scholar 

  48. Ma ZY, Su Q, Zhu JY, Meng XJ, Zhao Y, **n GX, Li Y, Hao XH (2022) Optimization of energy-storage properties for lead-free relaxor-ferroelectric (1–x)Na0.5Bi0.5TiO3-xSr0.7Nd0.2TiO3 ceramics. J Mater Sci 57:217–228. https://doi.org/10.1007/s10853-021-06684-6

    Article  CAS  Google Scholar 

  49. Qiao XS, Sheng AH, Wu D, Zhang FD, Chen B, Liang PF, Wang JJ, Chao XL, Yang ZP (2021) A novel multifunctional ceramic with photoluminescence and outstanding energy storage properties. Chem Eng J 408:127368. https://doi.org/10.1016/j.cej.2020.127368

    Article  CAS  Google Scholar 

  50. Ge PZ, Tang XG, Meng K, Huang XX, Li SF, Liu QX, Jiang YP (2022) Energy storage density and charge-discharge properties of PbHf1-xSnxO3 antiferroelectric ceramics. Chem Eng J 429:132540. https://doi.org/10.1016/j.cej.2021.132540

    Article  CAS  Google Scholar 

  51. Chao WN, Tian LY, Yang TQ, Li YX, Liu ZF (2022) Excellent energy storage performance achieved in novel PbHfO3-based antiferroelectric ceramics via grain size engineering. Chem Eng J 433:133814. https://doi.org/10.1016/j.cej.2021.133814

    Article  CAS  Google Scholar 

  52. Yan GW, Xu LQ, Fang BJ, Zhang S, Lu XL, Zhao XY, Ding JN (2022) Achieving high pulse charge-discharge energy storage properties and temperature stability of (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 lead-free ceramics via bandgap and defect engineering. Chem Eng J 450:137814. https://doi.org/10.1016/j.cej.2022.137814

    Article  CAS  Google Scholar 

  53. Qin YY, Luo F, Geng XL, **ng JH, Shang F, Chen GH (2022) Influences of crystallization temperature on the structure, dielectric, and energy storage characteristics of KBaSrNb5O15-based glass-ceramics. J Am Ceram Soc 105:6311–6319. https://doi.org/10.1111/jace.18615

    Article  CAS  Google Scholar 

  54. Jiang J, Meng XJ, Li L, Guo S, Huang M, Zhang J, Wang J, Hao XH, Zhu HG, Zhang ST (2021) Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering. Energy Storage Mater 43:383–390. https://doi.org/10.1016/j.ensm.2021.09.018

    Article  Google Scholar 

  55. Ge GL, Bai HR, Shi YJ, Shi C, He X, He J, Shen B, Zhai JW, Chou XJ (2021) Optimizing the energy storage properties of antiferroelectric ceramics by modulating the phase structure via constructing a novel binary composite. J Mater Chem A 9:11291–11299. https://doi.org/10.1039/d1ta01663f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Key Research and Development Program of China (2022YFB3807403), the Natural Science Foundation of Anhui Provincial Education Department (2022AH050979), the Scientific Research Starting Foundation of Anhui Polytechnic University (2021YQQ031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruzhong Zuo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study.

Ethical approval

Not applicable.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Yang, X., **e, A. et al. Lead-free X8R-type 0.92Ba0.8Sr0.2TiO3-0.08Bi(Mg0.5Zr0.5)O3 dielectric energy-storage ceramics for pulsed power capacitors. J Mater Sci 58, 11761–11770 (2023). https://doi.org/10.1007/s10853-023-08742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08742-7

Navigation