Log in

Enhanced thermoelectric power factor of PPy-based nanocomposites: effect of decorated graphene nanoplatelets by bismuth oxide nanoparticles

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a hybrid organic–inorganic material based on polypyrrole (PPy), graphene nanoplatelets (GNPs), and bismuth oxide nanoparticles (Bi2O3) was developed to overcome the limitations of organic materials’ thermoelectric (TE) conversion efficiency. The GNPs were decorated with Bi2O3 nanoparticles using a simple and effective method based on infrared irradiation and diazonium chemistry. The synthesized nanocomposites were characterized using various techniques such as X-ray diffraction, Transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy to examine the structural and physical properties. The results of this study showed a promising improvement in electrical conductivity (σ) and Seebeck coefficient (S) of PPy/GNPs-Bi2O3 compared to pure PPy, attributed to the π–π stacking between PPy chains and GNPs surface. Bi2O3 enhances the TE behavior of the nanocomposite by improving charge transport and binding both components (PPy and GNPs). At room temperature, the power factor was found to be 11 times higher (1 µW m−1 K−2) compared to pure PPy. Further exploration at high temperatures could result in higher TE performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Molina-Lopez F (2020) Emerging thermoelectric generators based on printed and flexible electronics technology. In: 2020 IEEE SENSORS. pp 1–4

  2. Kim HS, Liu W, Chen G et al (2015) Relationship between thermoelectric figure of merit and energy conversion efficiency. Proc Natl Acad Sci 112:8205–8210. https://doi.org/10.1073/pnas.1510231112

    Article  CAS  Google Scholar 

  3. Snyder GJ, Snyder AH (2017) Figure of merit ZT of a thermoelectric device defined from materials properties. Energy Environ Sci 10:2280–2283. https://doi.org/10.1039/C7EE02007D

    Article  Google Scholar 

  4. Kanahashi K, Pu J, Takenobu T (2020) 2D materials for large-area flexible thermoelectric devices. Adv Energy Mater 10:1902842. https://doi.org/10.1002/aenm.201902842

    Article  CAS  Google Scholar 

  5. Wang T, Liu C, Wang X et al (2017) Highly enhanced thermoelectric performance of WS2 nanosheets upon embedding PEDOT:PSS. J Polym Sci Part B Polym Phys 55:997–1004. https://doi.org/10.1002/polb.24349

    Article  CAS  Google Scholar 

  6. Liu X, Wang D, Wei P et al (2012) Effect of carrier mobility on magnetothermoelectric transport properties of graphene. Phys Rev B 86:155414. https://doi.org/10.1103/PhysRevB.86.155414

    Article  CAS  Google Scholar 

  7. Wang D, Shi J (2011) Effect of charged impurities on the thermoelectric power of graphene near the Dirac point. Phys Rev B 83:113403. https://doi.org/10.1103/PhysRevB.83.113403

    Article  CAS  Google Scholar 

  8. Sang M, Shin J, Kim K, Yu KJ (2019) Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 9:374. https://doi.org/10.3390/nano9030374

    Article  CAS  Google Scholar 

  9. Mardi S, Ambrogioni MR, Reale A (2020) Develo** printable thermoelectric materials based on graphene nanoplatelet/ethyl cellulose nanocomposites. Mater Res Express 7:085101. https://doi.org/10.1088/2053-1591/ababc0

    Article  CAS  Google Scholar 

  10. Liu Z, Sun J, Song H et al (2021) High performance polypyrrole/SWCNTs composite film as a promising organic thermoelectric material. RSC Adv 11:17704–17709. https://doi.org/10.1039/D1RA02733F

    Article  CAS  Google Scholar 

  11. Kumanek B, Stando G, Wróbel PS et al (2019) Thermoelectric properties of composite films from multi-walled carbon nanotubes and ethyl cellulose doped with heteroatoms. Synth Met 257:116190. https://doi.org/10.1016/j.synthmet.2019.116190

    Article  CAS  Google Scholar 

  12. Zhang K, Zhang Y, Wang S (2013) Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci Rep 3:3448. https://doi.org/10.1038/srep03448

    Article  Google Scholar 

  13. Piao M, Li C, Chu J et al (2018) Influence of chemical functionalization on the thermoelectric properties of monodispersed single-walled carbon nanotubes. J Mater Sci. https://doi.org/10.1007/s10853-018-2063-4

    Article  Google Scholar 

  14. Lan X, Liu C, Wang T et al (2019) Effect of functional groups on the thermoelectric performance of carbon nanotubes. J Electron Mater 48:6978–6984. https://doi.org/10.1007/s11664-019-07519-6

    Article  CAS  Google Scholar 

  15. Liebscher M, Gärtner T, Tzounis L et al (2014) Influence of the MWCNT surface functionalization on the thermoelectric properties of melt-mixed polycarbonate composites. Compos Sci Technol 101:133–138. https://doi.org/10.1016/j.compscitech.2014.07.009

    Article  CAS  Google Scholar 

  16. Bourenane Cherif Y, Mekhalif Z, Mekki A, Bekkar Djelloul Sayah Z (2022) Effect of MWCNTs surface functionalization group nature on the thermoelectric power factor of PPy/MWCNTs nanocomposites. Synth Met 291:117196. https://doi.org/10.1016/j.synthmet.2022.117196

    Article  CAS  Google Scholar 

  17. Liang L, Chen G, Guo C-Y (2017) Polypyrrole nanostructures and their thermoelectric performance. Mater Chem Front 1:380–386. https://doi.org/10.1039/C6QM00061D

    Article  CAS  Google Scholar 

  18. Zhu Z, Wang L, Gao C (2022) Chapter 3 - Thermoelectric properties of PEDOTs. In: Jiang F, Liu C, Xu J (eds) Advanced PEDOT thermoelectric materials. Woodhead Publishing, Cambridge, pp 73–95

    Chapter  Google Scholar 

  19. Xu S, Shi X-L, Dargusch M et al (2021) Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications. Prog Mater Sci 121:100840. https://doi.org/10.1016/j.pmatsci.2021.100840

    Article  CAS  Google Scholar 

  20. Cao T, Shi X-L, Chen Z-G (2023) Advances in the design and assembly of flexible thermoelectric device. Prog Mater Sci 131:101003. https://doi.org/10.1016/j.pmatsci.2022.101003

    Article  CAS  Google Scholar 

  21. Yin S, Lu W, Wu X et al (2021) Enhancing thermoelectric performance of polyaniline/single-walled carbon nanotube composites via dimethyl sulfoxide-mediated electropolymerization. ACS Appl Mater Interfaces 13:3930–3936. https://doi.org/10.1021/acsami.0c19100

    Article  CAS  Google Scholar 

  22. Zhang Q, Sun Y, Xu W, Zhu D (2014) Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 26:6829–6851. https://doi.org/10.1002/adma.201305371

    Article  CAS  Google Scholar 

  23. Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37:820–841. https://doi.org/10.1016/j.progpolymsci.2011.11.003

    Article  CAS  Google Scholar 

  24. Tang X, Liu T, Li H et al (2017) Notably enhanced thermoelectric properties of lamellar polypyrrole by do** with β-naphthalene sulfonic acid. RSC Adv 7:20192–20200. https://doi.org/10.1039/C7RA02302B

    Article  CAS  Google Scholar 

  25. Du Y, Niu H, Li J et al (2018) Morphologies tuning of polypyrrole and thermoelectric properties of polypyrrole nanowire/graphene composites. Polymers 10:1143. https://doi.org/10.3390/polym10101143

    Article  CAS  Google Scholar 

  26. Baghdadi N, Zoromba MS, Abdel-Aziz MH et al (2021) One-dimensional nanocomposites based on Polypyrrole-Carbon nanotubes and their thermoelectric performance. Polymers 13:278. https://doi.org/10.3390/polym13020278

    Article  CAS  Google Scholar 

  27. Chatterjee MJ, Chakraborty P, Banerjee D (2022) Charge transport through polypyrrole and single-walled carbon nanotube composite: a thermoelectric material. J Electron Mater 51:5956–5964. https://doi.org/10.1007/s11664-022-09812-3

    Article  CAS  Google Scholar 

  28. Liang L, Fan J, Wang M et al (2020) Ternary thermoelectric composites of polypyrrole/PEDOT:PSS/carbon nanotube with unique layered structure prepared by one-dimensional polymer nanostructure as template. Compos Sci Technol 187:107948. https://doi.org/10.1016/j.compscitech.2019.107948

    Article  CAS  Google Scholar 

  29. Wang Y, Yang J, Wang L et al (2017) Polypyrrole/Graphene/Polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl Mater Interfaces 9:20124–20131. https://doi.org/10.1021/acsami.7b05357

    Article  CAS  Google Scholar 

  30. Zheng Z-H, Shi X-L, Ao D-W et al (2022) Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat Sustain. https://doi.org/10.1038/s41893-022-01003-6

    Article  Google Scholar 

  31. Yin L-C, Liu W-D, Li M et al (2021) High carrier mobility and high figure of merit in the CuBiSe2 alloyed GeTe. Adv Energy Mater 11:2102913. https://doi.org/10.1002/aenm.202102913

    Article  CAS  Google Scholar 

  32. Ji L (2018) 3 - Metal oxide-based thermoelectric materials. In: Wu Y (ed) Metal oxides in energy technologies. Elsevier, Heidelberg, pp 49–72

    Chapter  Google Scholar 

  33. Yin Y, Tudu B, Tiwari A (2017) Recent advances in oxide thermoelectric materials and modules. Vacuum 146:356–374. https://doi.org/10.1016/j.vacuum.2017.04.015

    Article  CAS  Google Scholar 

  34. Feng Y, Jiang X, Ghafari E et al (2018) Metal oxides for thermoelectric power generation and beyond. Adv Compos Hybrid Mater 1:114–126. https://doi.org/10.1007/s42114-017-0011-4

    Article  CAS  Google Scholar 

  35. Eom J-H, Jung H-J, Han J-H et al (2014) Formation of Bismuth Nanocrystals in Bi2O3 thin films grown at 300 K by pulsed laser deposition for thermoelectric applications. ECS J Solid State Sci Technol 3:P315. https://doi.org/10.1149/2.0101410jss

    Article  CAS  Google Scholar 

  36. Debnath A, Deb K, Bhowmik KL, Saha B (2020) Reduced hop** barrier potential in NiO Nanoparticle-Incorporated, Polypyrrole-Coated graphene with enhanced thermoelectric properties. ACS Appl Energy Mater 3:7772–7781. https://doi.org/10.1021/acsaem.0c01174

    Article  CAS  Google Scholar 

  37. Martis P, Venugopal BR, Seffer J-F et al (2011) Infrared irradiation controlled decoration of multiwalled carbon nanotubes with copper/copper oxide nanocrystals. Acta Mater 59:5040–5047. https://doi.org/10.1016/j.actamat.2011.04.061

    Article  CAS  Google Scholar 

  38. Bekkar Djelloul Sayah Z, Mekki A, Delaleux F et al (2019) Response surface methodology as a powerful tool for the synthesis of polypyrrole-doped organic sulfonic acid and the optimization of its thermoelectric properties. J Electron Mater 48:3662–3675. https://doi.org/10.1007/s11664-019-07124-7

    Article  CAS  Google Scholar 

  39. Albetran HM (2020) Structural characterization of graphite nanoplatelets synthesized from graphite flakes. Preprints, 2020080325. https://doi.org/10.20944/preprints202008.0325.v1

  40. Ward MR, Younis S, Cruz-Cabeza AJ et al (2019) Discovery and recovery of delta p-aminobenzoic acid. CrystEngComm 21:2058–2066. https://doi.org/10.1039/C8CE01882K

    Article  CAS  Google Scholar 

  41. Karuppasamy P, Kamalesh T, Mohankumar V et al (2019) Synthesis, growth, structural, optical, thermal, laser damage threshold and computational perspectives of 4-nitrophenol 4-aminobenzoic acid monohydrate (4NPABA) single crystal. J Mol Struct 1176:254–265. https://doi.org/10.1016/j.molstruc.2018.08.074

    Article  CAS  Google Scholar 

  42. Bhakta AK, Detriche S, Kumari S et al (2018) Multi-wall carbon nanotubes decorated with Bismuth Oxide Nanocrystals using infrared irradiation and diazonium chemistry. J Inorg Organomet Polym Mater 28:1402–1413. https://doi.org/10.1007/s10904-018-0800-4

    Article  CAS  Google Scholar 

  43. Li M, Zhang Y, Yang L et al (2015) Excellent electrochemical performance of homogeneous polypyrrole/graphene composites as electrode material for supercapacitors. J Mater Sci Mater Electron 26:485–492. https://doi.org/10.1007/s10854-014-2425-x

    Article  CAS  Google Scholar 

  44. Zerbi G, Castiglioni C, Lopez Navarrete JT et al (1989) A molecular viewpoint of lattice dynamics and spectra of conducting polymers. Synth Met 28:D359–D368. https://doi.org/10.1016/0379-6779(89)90715-7

    Article  CAS  Google Scholar 

  45. Šetka M, Calavia R, Vojkůvka L et al (2019) Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles. Sci Rep 9:8465. https://doi.org/10.1038/s41598-019-44900-1

    Article  CAS  Google Scholar 

  46. Bhakta AK, Detriche S, Martis P, Mascarenhas RJ, Delhalle J, Mekhalif Z (2017) Decoration of tricarboxylic and monocarboxylic aryl diazonium functionalized multi-wall carbon nanotubes with iron nanoparticles. J Mater Sci 52:9648–9660. https://doi.org/10.1007/s10853-017-1100-z

    Article  CAS  Google Scholar 

  47. Alatawna A, Birenboim M, Nadiv R et al (2020) The effect of compatibility and dimensionality of carbon nanofillers on cement composites. Constr Build Mater 232:117141. https://doi.org/10.1016/j.conbuildmat.2019.117141

    Article  CAS  Google Scholar 

  48. Bhakta AK, Kumari S, Hussain S et al (2019) Differently substituted aniline functionalized MWCNTs to anchor oxides of Bi and Ni nanoparticles. J Nanostruct Chem 9:299–314. https://doi.org/10.1007/s40097-019-00319-8

    Article  CAS  Google Scholar 

  49. Cao J, Wang Y, Chen J et al (2015) Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. J Mater Chem A 3:14445–14457. https://doi.org/10.1039/C5TA02920A

    Article  CAS  Google Scholar 

  50. Gence L, Faniel S, Gustin C et al (2007) Structural and electrical characterization of hybrid metal-polypyrrole nanowires. Phys Rev B 76:115415. https://doi.org/10.1103/PhysRevB.76.115415

    Article  CAS  Google Scholar 

  51. Sreeprasad TS, Berry V (2013) How do the electrical properties of graphene change with its functionalization? Small 9:341–350. https://doi.org/10.1002/smll.201202196

    Article  CAS  Google Scholar 

  52. Wang L, Liu F, ** C et al (2014) Preparation of polypyrrole/graphene nanosheets composites with enhanced thermoelectric properties. RSC Adv 4:46187–46193. https://doi.org/10.1039/C4RA07774A

    Article  CAS  Google Scholar 

  53. Zhang Y, Zhang Q, Chen G (2020) Carbon and carbon composites for thermoelectric applications. Carbon Energy 2:408–436. https://doi.org/10.1002/cey2.68

    Article  CAS  Google Scholar 

  54. Alsalama M, Hamoudi H, Youssef KM (2021) The effect of graphene structural integrity on the power factor of tin selenide nanocomposite. J Alloys Compd 872:159584. https://doi.org/10.1016/j.jallcom.2021.159584

    Article  CAS  Google Scholar 

  55. Shin WH, Ahn K, Jeong M et al (2017) Enhanced thermoelectric performance of reduced graphene oxide incorporated bismuth-antimony-telluride by lattice thermal conductivity reduction. J Alloys Compd 718:342–348. https://doi.org/10.1016/j.jallcom.2017.05.204

    Article  CAS  Google Scholar 

  56. Debnath A, Deb K, Sarkar K, Saha B (2021) Low interfacial energy barrier and improved thermoelectric performance in Te-Incorporated Polypyrrole. J Phys Chem C 125:168–177. https://doi.org/10.1021/acs.jpcc.0c09100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Younes Bourenane Cherif acknowledges Ecole Militaire Polytechnique d’Alger, Algeria, for his Ph.D. grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Bourenane Cherif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourenane Cherif, Y., Mekhalif, Z., Mekki, A. et al. Enhanced thermoelectric power factor of PPy-based nanocomposites: effect of decorated graphene nanoplatelets by bismuth oxide nanoparticles. J Mater Sci 58, 4809–4823 (2023). https://doi.org/10.1007/s10853-023-08334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08334-5

Navigation