Log in

Thin-film composite membrane for desalination containing a sulfonated UiO-66 material

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Desalination through reverse osmosis (RO) membrane is one of the most popular ways. However, conventional RO membranes meet a trade-off between salt rejection and water flux which limit their comprehensive performance. In this work, sulfonated zirconium (IV)-carboxylate metal–organic framework (MOF) material UiO-66-SO3H was successfully synthesized, and thin-film nanocomposite (TFN) with UiO-66-SO3H-incorporated polyamide (PA) layer was fabricated. Angstrom-sized UiO-66-X ion transport channels with different functional groups in TFN membranes change the membrane morphology and chemistry and accelerate the penetration of water molecules while maintaining the high ion screening effect. As a result, compared to the pristine TFC membrane, the optimized TFN-UiO-66-SO3H membrane exhibited an increase in water molecules permeability to 347% and still maintained a salt rejection with ~ 94.7% under 2000 ppm NaCl solution with reverse osmosis (RO) mode, leading to a great improvement of intrinsic separation properties. The improved performance was owing to the size exclusion effect and hydrophilic nature of UiO-66-SO3H particles. What is more, the additional water migration channels through the incorporated UiO-66-SO3H nanoparticles lead to a boosting water permeation and show optimized performance for desalination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jones E, Qadir M, van Vliet MTH, Smakhtin V, Kang SM (2019) The state of desalination and brine production: a global outlook. Sci Total Environ 657:1343–1356. https://doi.org/10.1016/j.scitotenv.2018.12.076

    Article  CAS  Google Scholar 

  2. Cay-Durgun P, Lind ML (2018) Nanoporous materials in polymeric membranes for desalination. Curr Opin Chem Eng 20:19–27. https://doi.org/10.1016/j.coche.2018.01.001

    Article  Google Scholar 

  3. Lim YJ, Goh K, Kurihara M, Wang R (2021) Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication-a review. J Mem Sci 629:119292. https://doi.org/10.1016/j.memsci.2021.119292

    Article  CAS  Google Scholar 

  4. Zhao S, Liao Z, Fane A, Li J, Tang C, Zheng C, Lin J, Kong L (2021) Engineering antifouling reverse osmosis membranes: a review. Desalination 499:114857. https://doi.org/10.1016/j.desal.2020.114857

    Article  CAS  Google Scholar 

  5. Bai L, Liu Y, Ding A, Ren N, Li G, Liang H (2019) Fabrication and characterization of thin-film composite (TFC) nanofiltration membranes incorporated with cellulose nanocrystals (CNCs) for enhanced desalination performance and dye removal. Chem Eng J 358:1519–1528. https://doi.org/10.1016/j.cej.2018.10.147

    Article  CAS  Google Scholar 

  6. Yang Z, Guo H, Tang CY (2019) The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J Mem Sci 590:117297. https://doi.org/10.1016/j.memsci.2019.117297

    Article  CAS  Google Scholar 

  7. Misdan N, Lau WJ, Ismail AF, Matsuura T (2013) Formation of thin film composite nanofiltration membrane: effect of polysulfone substrate characteristics. Desalination 329:9–18. https://doi.org/10.1016/j.desal.2013.08.021

    Article  CAS  Google Scholar 

  8. Lau WJ, Gray S, Matsuura T, Emadzadeh D, Chen JP, Ismail AF (2015) A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res 80:306–324. https://doi.org/10.1016/j.watres.2015.04.037

    Article  CAS  Google Scholar 

  9. Zong Z, Feng X, Huang Y, Song Z, Zhou R, Zhou SJ, Carreon MA, Yu M, Li S (2016) Highly permeable N2/CH4 separation SAPO-34 membranes synthesized by diluted gels and increased crystallization temperature. Microporous Mesoporous Mater 224:36–42. https://doi.org/10.1016/j.micromeso.2015.11.014

    Article  CAS  Google Scholar 

  10. Duke MC, Zhu B, Doherty CM, Hill MR, Hill AJ, Carreon MA (2016) Structural effects on SAPO-34 and ZIF-8 materials exposed to seawater solutions, and their potential as desalination membranes. Desalination 377:128–137. https://doi.org/10.1016/j.desal.2015.09.004

    Article  CAS  Google Scholar 

  11. Ma X-H, Yao Z-K, Yang Z, Guo H, Xu Z-L, Tang CY, Elimelech M (2018) Nanofoaming of polyamide desalination membranes to tune permeability and selectivity. Environ Sci Technol Lett 5(2):123–130. https://doi.org/10.1021/acs.estlett.8b00016

    Article  CAS  Google Scholar 

  12. Yang Z, Guo H, Yao ZK, Mei Y, Tang CY (2019) Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes. Environ Sci Technol 53(9):5301–5308. https://doi.org/10.1021/acs.est.9b00473

    Article  CAS  Google Scholar 

  13. Xu G-R, Xu J-M, Feng H-J, Zhao H-L, Wu S-B (2017) Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review. Desalination 417:19–35. https://doi.org/10.1016/j.desal.2017.05.011

    Article  CAS  Google Scholar 

  14. He M, Wang L, Lv Y, Wang X, Zhang Z, Cui Q, Zhu J (2020) Effect of a novel hydrophilic double-skinned support layer on improving anti-fouling performance of thin-film composite forward osmosis membrane. Colloids Surf A Physicochem Eng Aspects 602:125081. https://doi.org/10.1016/j.colsurfa.2020.125081

    Article  CAS  Google Scholar 

  15. An X, Zhang K, Wang Z, Ly QV, Hu Y, Liu C (2020) Improving the water permeability and antifouling property of the nanofiltration membrane grafted with hyperbranched polyglycerol. J Mem Sci 612:118417. https://doi.org/10.1016/j.memsci.2020.118417

    Article  CAS  Google Scholar 

  16. Li H, Shi L, Li C, Fu X, Huang Q, Zhang B (2020) Metal-organic framework based on alpha-cyclodextrin gives high ethylene gas adsorption capacity and storage stability. ACS Appl Mater Interfaces 12(30):34095–34104. https://doi.org/10.1021/acsami.0c08594

    Article  CAS  Google Scholar 

  17. Riley BJ, Chong S, Kuang W, Varga T, Helal AS, Galanek M, Li J, Nelson ZJ, Thallapally PK (2020) Metal-organic framework-polyacrylonitrile composite beads for xenon capture. ACS Appl Mater Interfaces 12(40):45342–45350. https://doi.org/10.1021/acsami.0c13717

    Article  CAS  Google Scholar 

  18. Zhang S, Gui B, Ben T, Qiu S (2020) Switchable molecular sieving of a capped metal organic framework membrane. J Mater Chem A 8(38):19984–19990. https://doi.org/10.1039/d0ta05610c

    Article  CAS  Google Scholar 

  19. Li J, Wang H, Yuan X, Zhang J, Chew JW (2020) Metal-organic framework membranes for wastewater treatment and water regeneration. Coord Chem Rev 404:213116. https://doi.org/10.1016/j.ccr.2019.213116

    Article  CAS  Google Scholar 

  20. Yu H, Fan M, Liu Q, Su Z, Li X, Pan Q, Hu X (2020) Two highly water-stable imidazole-based Ln-MOFs for sensing Fe(3+), Cr2O7(2−)/CrO4(2−) in a water environment. Inorg Chem 59(3):2005–2010. https://doi.org/10.1021/acs.inorgchem.9b03364

    Article  CAS  Google Scholar 

  21. Aghili F, Ghoreyshi AA, Van der Bruggen B, Rahimpour A (2021) Introducing gel-based UiO-66-NH2 into polyamide matrix for preparation of new super hydrophilic membrane with superior performance in dyeing wastewater treatment. J Environ Chem Eng 9(4):105484. https://doi.org/10.1016/j.jece.2021.105484

    Article  CAS  Google Scholar 

  22. Yassari M, Shakeri A, Salehi H (2022) ZIF-67 templated thin-film composite forward osmosis membrane: importance of incorporation method on morphology and performance. Chem Eng Res Des 180:369–378. https://doi.org/10.1016/j.cherd.2022.03.005

    Article  CAS  Google Scholar 

  23. Abdullah N, Yusof N, Ismail AF, Lau WJ (2021) Insights into metal-organic frameworks-integrated membranes for desalination process: a review. Desalination 500:114867. https://doi.org/10.1016/j.desal.2020.114867

    Article  CAS  Google Scholar 

  24. Li T, Wang Y, Wang X, Cheng C, Zhang K, Yang J, Han G, Wang Z, Wang X, Wang L (2022) Desalination characteristics of cellulose acetate FO membrane incorporated with ZIF-8 nanoparticles. Membranes 12:122. https://doi.org/10.3390/membranes12020122

    Article  CAS  Google Scholar 

  25. Wen Y, Dai R, Li X, Zhang X, Cao X, Wu Z, Lin S, Tang CY, Wang Z (2020) Metal-organic framework enables ultraselective polyamide membrane for desalination and water reuse. Sci Adv 8(10):eabm4149. https://doi.org/10.1126/sciadv.abm4149

    Article  CAS  Google Scholar 

  26. Hu P, Yuan B, Niu QJ, Wang N, Zhao S, Cui J, Jiang J (2022) In situ assembled zeolite imidazolate framework nanocrystals hybrid thin film nanocomposite membranes for brackish water desalination. Sep Purif Technol 293:121134. https://doi.org/10.1016/j.seppur.2022.121134

    Article  CAS  Google Scholar 

  27. Shukla AA-O, Alam JA-O, Alhoshan MS, Ali FAA, Mishra U, Hamid AA (xxxx) Thin-film nanocomposite membrane incorporated with porous Zn-based metal-organic frameworks: toward enhancement of desalination performance and chlorine resistance, (1944–8252 (Electronic))

  28. Nightingale ER (1959) Phenomenological theory of ion solvation. effective radii of hydrated ions. J Phys Chem 63(9):1381–1387. https://doi.org/10.1021/j150579a011

    Article  CAS  Google Scholar 

  29. Liu Y, Wang X-P, Zong Z-A, Lin R, Zhang X-Y, Chen F-S, Ding W-D, Zhang L-L, Meng X-M, Hou J (2022) Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. J Mem Sci 653:120520. https://doi.org/10.1016/j.memsci.2022.120520

    Article  CAS  Google Scholar 

  30. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem Mater 22(24):6632–6640. https://doi.org/10.1021/cm102601v

    Article  CAS  Google Scholar 

  31. Garibay SJ, Cohen SM (2010) Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem Commun (Camb) 46(41):7700–7702. https://doi.org/10.1039/c0cc02990d

    Article  CAS  Google Scholar 

  32. Huang Q, Luo Q, Chen Z, Yao L, Fu P, Lin Z (2018) The effect of electrolyte concentration on electrochemical impedance for evaluating polysulfone membranes. Environ Sci Water Res Technol 4(8):1145–1151. https://doi.org/10.1039/c8ew00225h

    Article  CAS  Google Scholar 

  33. Liu J, Chen Z, Yao L, Wang S, Huang L, Dong C, Niu L (2019) The 2D platelet confinement effect on the membrane hole structure probed by electrochemical impedance spectroscopy. Electrochem Commun 106:106517. https://doi.org/10.1016/j.elecom.2019.106517

    Article  CAS  Google Scholar 

  34. Li X, Zhang H, Wang P, Hou J, Lu J, Easton CD, Zhang X, Hill MR, Thornton AW, Liu JZ, Freeman BD, Hill AJ, Jiang L, Wang H (2019) Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat Commun 10(1):2490. https://doi.org/10.1038/s41467-019-10420-9

    Article  CAS  Google Scholar 

  35. Xu T, Shehzad MA, Wang X, Wu B, Ge L, Xu T (2020) Engineering leaf-like UiO-66-SO3H membranes for selective transport of cations. Nano-Micro Lett 12:51. https://doi.org/10.1007/s40820-020-0386-6

    Article  CAS  Google Scholar 

  36. Goesten MG, Juan-Alcañiz J, Ramos-Fernandez EV, Gupta KBSS, Stavitski E, van Bekkum H, Gascon J, Kapteijn F (2011) Sulfation of metal–organic frameworks: opportunities for acid catalysis and proton conductivity. J Catal 281(1):177–187. https://doi.org/10.1016/j.jcat.2011.04.015

    Article  CAS  Google Scholar 

  37. Juan-Alcañiz J, Gielisse R, Lago AB, Ramos-Fernandez EV, Serra-Crespo P, Devic T, Guillou N, Serre C, Kapteijn F, Gascon J (2013) Towards acid MOFs–catalytic performance of sulfonic acid functionalized architectures. Catal Sci Technol 3(9):2311. https://doi.org/10.1039/c3cy00272a

    Article  CAS  Google Scholar 

  38. Hasan Z, Jun JW, Jhung SH (2015) Sulfonic acid-functionalized MIL-101(Cr): an efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol. Chem Eng J 278:265–271. https://doi.org/10.1016/j.cej.2014.09.025

    Article  CAS  Google Scholar 

  39. Kuwahara Y, Kango H, Yamashita H (2016) Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over sulfonic acid-functionalized UiO-66. ACS Sustain Chem Eng 5(1):1141–1152. https://doi.org/10.1021/acssuschemeng.6b02464

    Article  CAS  Google Scholar 

  40. Ma X, Yang Z, Yao Z, Guo H, Xu Z, Tang CY (2019) Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance. J Colloid Interface Sci 540:382–388. https://doi.org/10.1016/j.jcis.2019.01.033

    Article  CAS  Google Scholar 

  41. Peng LE, Yao Z, Liu X, Deng B, Guo H, Tang CY (2019) Tailoring polyamide rejection layer with aqueous carbonate chemistry for enhanced membrane separation: mechanistic insights, chemistry-structure-property relationship, and environmental implications. Environ Sci Technol 53(16):9764–9770. https://doi.org/10.1021/acs.est.9b03210

    Article  CAS  Google Scholar 

  42. Kang Y, Obaid M, Jang J, Ham MH, Kim IS (2018) Novel sulfonated graphene oxide incorporated polysulfone nanocomposite membranes for enhanced-performance in ultrafiltration process. Chemosphere 207:581–589. https://doi.org/10.1016/j.chemosphere.2018.05.141

    Article  CAS  Google Scholar 

  43. Peressut AB, Latorrata S, Stampino PG, Dotelli G (2021) Development of self-assembling sulfonated graphene oxide membranes as a potential proton conductor. Mater Chem Phys 257:123768. https://doi.org/10.1016/j.matchemphys.2020.123768

    Article  CAS  Google Scholar 

  44. Li J, **ong B, Yin C, Zhang X, Zhou Y, Wang Z, Fang P, He C (2018) Free volume characteristics on water permeation and salt rejection of polyamide reverse osmosis membranes investigated by a pulsed slow positron beam. J Mater Sci 53(23):16132–16145. https://doi.org/10.1007/s10853-018-2740-3

    Article  CAS  Google Scholar 

  45. Hamza MF, Salih KAM, Abdel-Rahman AAH, Zayed YE, Wei Y, Liang J, Guibal E (2021) Sulfonic-functionalized algal/PEI beads for scandium, cerium and holmium sorption from aqueous solutions (synthetic and industrial samples). Chem Eng J 403:126399. https://doi.org/10.1016/j.cej.2020.126399

    Article  CAS  Google Scholar 

  46. Luo Q-Z, Huang Q, Chen Z, Yao L, Fu P, Lin Z-D (2018) Polyvinylidene fluoride membranes probed by electrochemical impedance spectroscopy. Mater Res Express. https://doi.org/10.1088/2053-1591/aac7f2

    Article  Google Scholar 

  47. Luo Q, Huang Q, Chen Z, Yao L, Fu Q, Fu P, Lin Z (2018) Temperature dependence of the pore structure in polyvinylidene fluoride (PVDF)/graphene composite membrane probed by electrochemical impedance spectroscopy. Polymers 10(10):1123. https://doi.org/10.3390/polym10101123

    Article  CAS  Google Scholar 

  48. Sahu S, Di Ventra M, Zwolak M (2017) Dehydration as a universal mechanism for ion selectivity in graphene and other atomically thin pores. Nano Lett 17(8):4719–4724. https://doi.org/10.1021/acs.nanolett.7b01399

    Article  CAS  Google Scholar 

  49. Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112(5):1427–1434. https://doi.org/10.1021/jp709845u

    Article  CAS  Google Scholar 

  50. Yang Z, Huang X, Ma X-H, Zhou Z-W, Guo H, Yao Z, Feng S-P, Tang CY (2019) Fabrication of a novel and green thin-film composite membrane containing nanovoids for water purification. J Membr Sci 570–571:314–321. https://doi.org/10.1016/j.memsci.2018.10.057

    Article  CAS  Google Scholar 

  51. Li W-X, Yang Z, Liu W-L, Huang Z-H, Zhang H, Li M-P, Ma X-H, Tang CY, Xu Z-L (2021) Polyamide reverse osmosis membranes containing 1D nanochannels for enhanced water purification. J Membr Sci 618:118681. https://doi.org/10.1016/j.memsci.2020.118681

    Article  CAS  Google Scholar 

  52. Gu JE, Lee S, Stafford CM, Lee JS, Choi W, Kim BY, Baek KY, Chan EP, Chung JY, Bang J, Lee JH (2013) Molecular layer-by-layer assembled thin-film composite membranes for water desalination. Adv Mater 25(34):4778–4782. https://doi.org/10.1002/adma.201302030

    Article  CAS  Google Scholar 

  53. Di Vincenzo M, Tiraferri A, Musteata VE, Chisca S, Sougrat R, Huang LB, Nunes SP, Barboiu M (2020) Biomimetic artificial water channel membranes for enhanced desalination. Nat Nanotechnol 5:190–196. https://doi.org/10.1038/s41565-020-00796-x

    Article  CAS  Google Scholar 

  54. Mutharasi Y, Zhang Y, Weber M, Maletzko C, Chung T-S (2021) Novel reverse osmosis membranes incorporated with Co-Al layered double hydroxide (LDH) with enhanced performance for brackish water desalination. Desalination 498:114740. https://doi.org/10.1016/j.desal.2020.114740

    Article  CAS  Google Scholar 

  55. Shen Q, Lin Y, Kawabata Y, Jia Y, Zhang P, Akther N, Guan K, Yoshioka T, Shon H, Matsuyama H (2020) Engineering heterostructured thin-film nanocomposite membrane with functionalized graphene oxide quantum dots (GOQD) for highly efficient reverse osmosis. ACS Appl Mater Interfaces 12(34):38662–38673. https://doi.org/10.1021/acsami.0c10301

    Article  CAS  Google Scholar 

  56. Ghanbari M, Emadzadeh D, Lau WJ, Matsuura T, Ismail AF (2015) Synthesis and characterization of novel thin film nanocomposite reverse osmosis membranes with improved organic fouling properties for water desalination. RSC Adv 5(27):21268–21276. https://doi.org/10.1039/C4RA16177G

    Article  CAS  Google Scholar 

  57. Wang Y, Smith SJD, Liu Y, Lu P, Zhang X, Ng D, **e Z (2022) Surface hydrophilicity modification of thin-film composite membranes with metal−organic frameworks (MOFs) Ti-UiO-66 for simultaneous enhancement of anti-fouling property and desalination performance. Separ Purification Technol 302:122001. https://doi.org/10.1016/j.seppur.2022.122001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (No. 51706157) and Applied Basic Research Foundation of Guangdong-Hong Kong-Macao Greater Bay Area (No. 2020B1515120011).

Funding

This study was funded by National Natural Science Foundation of China, 51706157, Haifeng Jiang, Applied Basic Research Foundation of Guangdong-Hong Kong-Macao Greater Bay Area, 2020B1515120011, Xuejiao Hu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunqing He, Xuejiao Hu or Haifeng Jiang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2238 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Li, J., Yun, P. et al. Thin-film composite membrane for desalination containing a sulfonated UiO-66 material. J Mater Sci 58, 3134–3146 (2023). https://doi.org/10.1007/s10853-023-08216-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08216-w

Navigation