Log in

High index lattice plane of CdS to enhance photocatalytic hydrogen production

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Semiconductor photolysis of aquatic hydrogen has become a research hotspot in recent years. Cadmium sulfide (CdS) photocatalyst has been drawn widespread interest due to good visible light absorption, proper energy band potential, and excellent electron-hole pair production rate and mobility. In this work, three morphologies of CdS were synthesized successfully using different cadmium salts and sulfur sources by solvothermal methods. Compared with CdS nanospheres and nanorods, CdS nanosheets photocatalyst could suppressed the photoogenic electron holes better, resulting its high photocatalytic hydrogen generation activity. CdS nanosheets with good photostability showed the fastest photocatalytic hydrogen production rate (12.37 mmol h−1 g−1) with the support of simulated solar-light irradiation. These results indicated that the excellent photocatalytic performance of CdS nanosheets may be related to its exposed high index (002) lattice plane, which was main photocatalytic active lattice plane. This work optimized the catalytic properties of materials by regulating the morphology and the exposure of different lattice planes, which were of great significance for solar energy capture and conversion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 2

Similar content being viewed by others

References

  1. Lin S, Bai X, Wang H, Wang H, Song J, Huang K, Wang C, Wang N, Li B, Lei M, Wu H (2017) Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows. Adv Mater 29(41):1703238

    Article  Google Scholar 

  2. Xu X, Pan L, Han Q, Wang C, Ding P, Pan J, Hu J, Zeng H, Zhou Y (2019) Metallic molybdenum sulfide nanodots as platinum-alternative co-catalysts for photocatalytic hydrogen evolution. J Catal 374:237–245

    Article  CAS  Google Scholar 

  3. Xu Y, Wang R, Wang J, Li J, Jiao T, Liu Z (2021) Facile fabrication of molybdenum compounds (Mo2C, MoP and MoS2) nanoclusters supported on N-doped reduced graphene oxide for highly efficient hydrogen evolution reaction over broad pH range. Chem Eng J 417:129233

    Article  CAS  Google Scholar 

  4. Dang C, Liu L, Yang G, Cai W, Long J, Yu H (2020) Mg-promoted Ni-CaO microsphere as bi-functional catalyst for hydrogen production from sorption-enhanced steam reforming of glycerol. Chem Eng J 383:123204

    Article  CAS  Google Scholar 

  5. Li G, Wang J, Yu J, Liu H, Cao Q, Du J, Zhao L, Jia J, Liu H, Zhou W (2020) Ni-Ni3P nanoparticles embedded into N, P-doped carbon on 3D graphene frameworks via in situ phosphatization of saccharomycetes with multifunctional electrodes for electrocatalytic hydrogen production and anodic degradation. Appl Catal B Environ 261:118147

    Article  CAS  Google Scholar 

  6. Zhang H, Dong Y, Zhao S, Wang G, Jiang P, Zhong J, Zhu Y (2020) Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Appl Catal B Environ 261:118233

    Article  CAS  Google Scholar 

  7. Xu Y, Wang R, Liu Z, Gao L, Jiao T, Liu Z (2022) Ni2P/MoS2 interfacial structures loading on N-doped carbon matrix for highly efficient hydrogen evolution. Green Energy Environ 7(4):829–839

    Article  Google Scholar 

  8. Wang S, Shen C, Xu Y, Zhong Y, Wang C, Yang S, Wang G (2019) An improved metal-to-ligand charge transfer mechanism for photocatalytic hydrogen evolution. Chemsuschem 12(18):4221–4228

    Article  CAS  Google Scholar 

  9. Dong J, Fang W, **a W, Lu Q, Zeng X (2021) Facile preparation of ZnxCd1-xS/ZnS heterostructures with enhanced photocatalytic hydrogen evolution under visible light. RSC Adv 11(35):21642–21650

    Article  CAS  Google Scholar 

  10. Deng H, Yin J, Ma J, Zhou J, Zhang L, Gao L, Jiao T (2021) Exploring the enhanced catalytic performance on nitro dyes via a novel template of flake-network Ni-Ti LDH/GO in-situ deposited with Ag3PO4 NPs. Appl Surf Sci 543:148821

    Article  CAS  Google Scholar 

  11. Xu Y, Wang R, Wang J, Zhang Y, Jiao T (2022) Encapsulation of Fe-CoP with P, N-co-doped porous carbon matrix as a multifunctional catalyst for wide electrochemical applications. J Energy Chem 71:36–44

    Article  CAS  Google Scholar 

  12. Cheng L, **ang Q, Liao Y, Zhang H (2018) CdS-based photocatalysts. Energy Environ Sci 11(6):1362–1391

    Article  CAS  Google Scholar 

  13. Li J-Y, Li Y-H, Qi M-Y, Lin Q, Tang Z-R, Xu Y-J (2020) Selective organic transformations over cadmium sulfide-based photocatalysts. ACS Catal 10(11):6262–6280

    Article  CAS  Google Scholar 

  14. Sharma S, Dutta V, Raizada P, Hosseini-Bandegharaei A, Singh P, Nguyen V-H (2020) Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: a review. Environ Chem Lett 19(1):271–306

    Article  Google Scholar 

  15. Shen R, Ren D, Ding Y, Guan Y, Ng YH, Zhang P, Li X (2020) Nanostructured CdS for efficient photocatalytic H2 evolution: a review. Sci China Mater 63(11):2153–2188

    Article  CAS  Google Scholar 

  16. Zhang J, Yuan X, Si M, Jiang L, Yu H (2020) Core-shell structured cadmium sulfide nanocomposites for solar energy utilization. Adv Colloid Interface Sci 282:102209

    Article  CAS  Google Scholar 

  17. Ding X, Yang T, Wei W, Wang Y, Xu K, Zhu Z, Zhao H, Yu T, Zhang D (2020) An in situ grown lanthanum sulfide/molybdenum sulfide hybrid catalyst for electrochemical hydrogen evolution. Catal Sci Technol 10(10):3247–3254

    Article  CAS  Google Scholar 

  18. Hao H, Feng J, Chen W, **ang S, Liu W, Wu X (2015) Adsorption behavior of herbicide paraquat from aqueous solutions using starfish particles: kinetic, isotherm, and thermodynamic studies. Asia-Pac J Chem Eng 10(3):347–355

    Article  CAS  Google Scholar 

  19. Li P, Zhao H, Yan X, Yang X, Li J, Gao S, Cao R (2020) Visible-light-driven photocatalytic hydrogen production coupled with selective oxidation of benzyl alcohol over CdS@MoS2 heterostructures. Sci China Mater 63(11):2239–2250

    Article  CAS  Google Scholar 

  20. Tan C-L, Qi M-Y, Tang Z-R, Xu Y-J (2021) Cocatalyst decorated ZnIn2S4 composites for cooperative alcohol conversion and H2 evolution. Appl Catal B Environ 298:120541

    Article  CAS  Google Scholar 

  21. Tian L, Min S, Wang F (2019) Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution. Appl Catal B Environ 259:118029

    Article  CAS  Google Scholar 

  22. Wang Z, Liu Z, Chen J, Yang H, Luo J, Gao J, Zhang J, Yang C, Jia S, Liu B (2019) Self-assembly of three-dimensional CdS nanosphere/graphene networks for efficient photocatalytic hydrogen evolution. J Energy Chem 31:34–38

    Article  Google Scholar 

  23. Yao Y, Li Q, Dai X, Dai P, Xu D (2022) A novel hierarchical CdS-DETA@CoP composite as highly stable photocatalyst for efficient H2 evolution from water splitting under visible light irradiation. Appl Surf Sci 588:152890

    Article  CAS  Google Scholar 

  24. Guo L-J, Luo J-W, He T, Wei S-H, Li S-S (2018) Photocorrosion-limited maximum efficiency of solar photoelectrochemical water splitting. Phys Rev Appl 10(6):064059

    Article  CAS  Google Scholar 

  25. Razavi-Khosroshahi H, Mohammadzadeh S, Hojamberdiev M, Kitano S, Yamauchi M, Fuji M (2019) Visible light active Bi3TaO7 nanosheets for water splitting. Dalton Trans 48(25):9284–9290

    Article  CAS  Google Scholar 

  26. Shah JH, Huang B, Idris AM, Liu Y, Malik AS, Hu W, Zhang Z, Han H, Li C (2020) Regulation of ferroelectric polarization to achieve efficient charge separation and transfer in particulate RuO2/BiFeO3 for high photocatalytic water oxidation activity. Small 16(44):e2003361

    Article  Google Scholar 

  27. Sun W, Meng S, Zhang S, Zheng X, Ye X, Fu X, Chen S (2018) Insight into the transfer mechanisms of photogenerated carriers for heterojunction photocatalysts with the analogous positions of valence band and conduction band: a case study of ZnO/TiO2. J Phys Chem C 122(27):15409–15420

    Article  CAS  Google Scholar 

  28. Li K, Jiao T, **ng R, Zou G, Zhou J, Zhang L, Peng Q (2018) Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci China Mater 61(5):728–736

    Article  CAS  Google Scholar 

  29. Liu Y, Du C, Zhou C, Yang S (2019) One-step synthesis of hierarchical AuNPs/Cd0.5Zn0.5S nanoarchitectures and their application as an efficient photocatalyst for hydrogen production. J Ind Eng Chem 72:338–345

    Article  CAS  Google Scholar 

  30. Wang M, Cui Z, Yang M, Lin L, Chen X, Wang M, Han J (2019) Core/shell structured CdS/polydopamine/TiO2 ternary hybrids as highly active visible-light photocatalysis. J Colloid Interface Sci 544:1–7

    Article  CAS  Google Scholar 

  31. Wang S, Zhu B, Liu M, Zhang L, Yu J, Zhou M (2019) Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl Catal B 243:19–26

    Article  CAS  Google Scholar 

  32. Zang Y, Ju Y, Hu X, Zhou H, Yang Z, Jiang J, Xue H (2018) WS2 nanosheets-sensitized CdS quantum dots heterostructure for photoelectrochemical immunoassay of alpha-fetoprotein coupled with enzyme-mediated biocatalytic precipitation. Analyst 143(12):2895–2900

    Article  CAS  Google Scholar 

  33. **ao R, Zhao C, Zou Z, Chen Z, Tian L, Xu H, Tang H, Liu Q, Lin Z, Yang X (2020) In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B Environ 268:118382

    Article  CAS  Google Scholar 

  34. Lang D, Cheng F, **ang Q (2016) Enhancement of photocatalytic H2 production activity of CdS nanorods by cobalt-based cocatalyst modification. Catal Sci Technol 6(16):6207–6216

    Article  CAS  Google Scholar 

  35. Liu G, Kolodziej C, ** R, Qi S, Lou Y, Chen J, Jiang D, Zhao Y, Burda C (2020) MoS2-stratified CdS-Cu2-xS core-shell nanorods for highly efficient photocatalytic hydrogen production. ACS Nano 14(5):5468–5479

    Article  CAS  Google Scholar 

  36. Qin Y, Li H, Lu J, Meng F, Ma C, Yan Y, Meng M (2020) Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem Eng J 384:123275

    Article  CAS  Google Scholar 

  37. Du X, Wu Y, Kou Y, Mu J, Yang Z, Hu X, Teng F (2019) Amorphous carbon inhibited TiO2 phase transition in aqueous solution and its application in photocatalytic degradation of organic dye. J Alloys Compd 810:151917

    Article  CAS  Google Scholar 

  38. Chen Y, Liu X, Hou L, Guo X, Fu R, Sun J (2020) Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride Z-scheme heterojunction for enhanced visible-light-driven H2 evolution. Chem Eng J 383:123132

    Article  CAS  Google Scholar 

  39. Cheng L, Zhang D, Liao Y, Zhang H, **ang Q (2019) One-step solid-phase synthesis of 2D ultrathin CdS nanosheets for enhanced visible-light photocatalytic hydrogen evolution. Solar RRL 3(6):1900062

    Article  Google Scholar 

  40. Bie C, Fu J, Cheng B, Zhang L (2018) Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation. Appl Surf Sci 462:606–614

    Article  CAS  Google Scholar 

  41. Han W, Wei Y, Wan J, Nakagawa N, Wang D (2022) Hollow multishell-structured TiO2/MAPbI3 composite improves charge utilization for visible-light photocatalytic hydrogen evolution. Inorg Chem 61(13):5397–5404

    Article  Google Scholar 

  42. Jiang L, Yu H, Shi L, Zhao Y, Wang Z, Zhang M, Yuan S (2016) Optical band structure and photogenerated carriers transfer dynamics in FTO/TiO2 heterojunction photocatalysts. Appl Catal B 199:224–229

    Article  CAS  Google Scholar 

  43. Pan J, Li H, Li S, Ou W, Liu Y, Wang J, Song C, Zheng Y, Li C (2020) The enhanced photocatalytic hydrogen production of nickel-cobalt bimetals sulfide synergistic modified CdS nanorods with active facets. Renew Energy 156:469–477

    Article  CAS  Google Scholar 

  44. Huang M, Liu C, Cui P, Wu T, Feng X, Huang H, Zhou J, Wang Y (2021) Facet-dependent photoinduced transformation of cadmium sulfide (CdS) nanoparticles. Environ Sci Technol 55(19):13132–13141

    CAS  Google Scholar 

  45. Fan J, Zang Y, Jiang J, Lei J, Xue H (2019) Beta-cyclodextrin-functionalized CdS nanorods as building modules for ultrasensitive photoelectrochemical bioassay of HIV DNA. Biosens Bioelectron 142:111557

    Article  CAS  Google Scholar 

  46. Bera R, Kundu S, Patra A (2015) 2D hybrid nanostructure of reduced graphene oxide-CdS nanosheet for enhanced photocatalysis. ACS Appl Mater Interfaces 7(24):13251–13259

    Article  CAS  Google Scholar 

  47. Xu Y, Zhao W, Xu R, Shi Y, Zhang B (2013) Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem Commun (Camb) 49(84):9803–9805

    Article  CAS  Google Scholar 

  48. Zhang Q, Du C, Zhao Q, Zhou C, Yang S (2019) Visible light-driven the splitting of ethanol into hydrogen and acetaldehyde catalyzed by fibrous AgNPs/CdS hybrids at room temperature. J Taiwan Inst Chem Eng 102:182–189

    Article  CAS  Google Scholar 

  49. Ju Y, Hu X, Zang Y, Cao R, Xue H (2019) Amplified photoelectrochemical DNA biosensor based on a CdS quantum dot/WS2 nanosheet heterojunction and hybridization chain reaction-mediated enzymatic hydrolysis. Anal Methods 11(16):2163–2169

    Article  CAS  Google Scholar 

  50. Huang H, Ouyang H, Han T, Wang H, Zheng X (2019) Construction of carbon quantum dots/single crystal TiO2 nanosheets with exposed 001 and 101 facets and their visible light driven catalytic activity. RSC Adv 9(7):3532–3541

    Article  CAS  Google Scholar 

  51. Han G, ** YH, Burgess RA, Dickenson NE, Cao XM, Sun Y (2017) Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. J Am Chem Soc 139(44):15584–15587

    Article  CAS  Google Scholar 

  52. Yu J, Yu Y, Zhou P, **ao W, Cheng B (2014) Morphology-dependent photocatalytic H2-production activity of CdS. Appl Catal B 156–157:184–191

    Article  Google Scholar 

  53. Zhang Y, Han L, Wang C, Wang W, Ling T, Yang J, Dong C, Lin F, Du X-W (2017) Zinc-blende CdS nanocubes with coordinated facets for photocatalytic water splitting. ACS Catal 7(2):1470–1477

    Article  CAS  Google Scholar 

  54. Daskalakis I, Vamvasakis I, Papadas IT, Tsatsos S, Choulis SA, Kennou S, Armatas GS (2020) Surface defect engineering of mesoporous Cu/ZnS nanocrystal-linked networks for improved visible-light photocatalytic hydrogen production. Inorg Chem Front 7(23):4687–4700

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The funding support from the Natural Science Research Project of Jiangsu Higher Education Institutions (Grant no. 21KJA530004), 2021 Young Scientist Exchange Program between the Republic of Korea and the People’s Republic of China, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **g**g Jiang, Jianhua Hou or Ming Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1845 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Ye, K., Zhang, W. et al. High index lattice plane of CdS to enhance photocatalytic hydrogen production. J Mater Sci 57, 21667–21679 (2022). https://doi.org/10.1007/s10853-022-07980-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07980-5

Navigation