Log in

PtPd alloy nanoparticles supported on CuFe2O4 submicrospheres with enhanced synergistic catalysis for reduction of p-nitrothiophenol

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have developed a facile three-step fabricating procedure whereby uniformly dispersed and highly catalytically active PtPd bimetal nanoparticles (NPs) were tightly tethered to the catalytically active and superparamagnetic CuFe2O4 submicrospheres. The obtained CuFe2O4@PtPd composite catalyst with core-satellite structure was characterized by TEM, HAADF-STEM, XRD and XPS. For comparison, structurally similar CuFe2O4@Pt and CuFe2O4@Pd were also prepared by the same method. Their catalytic properties for reduction of p-nitrothiophenol (p-NTP) by NaBH4 were comparatively studied and the enhanced catalytic mechanism was tentatively explained. The results indicate that the inherent catalytic activity of CuFe2O4 can be obviously heightened when Pt, Pd and PtPd alloy NPs are attached to its surface, respectively. However, the catalytic performance of CuFe2O4@PtPd is enhanced more prominently than that of CuFe2O4@Pt and CuFe2O4@Pd. The significantly enhanced activity by loading PtPd NPs compared to that by loading Pt or Pd NPs is mainly attributed to: (1) PtPd NPs with smaller size are uniformly and strongly bound to the CuFe2O4 and effectively boost their synergistic catalysis. (2) The electronic coupling effect in PtPd alloy NPs may play a more important part in enhancing the catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hudson R, Feng Y, Varma R, Moores A (2014) Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations. Green Chem 16:4493–4505

    Article  CAS  Google Scholar 

  2. Bai S, Shen X, Zhong X, Liu Y, Zhu G, Xu X, Chen K (2012) One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon 50:2337–2346

    Article  CAS  Google Scholar 

  3. Li M, **ong Y, Liu X, Bo X, Zhang Y, Han C, Guo L (2015) Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electro-catalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 7:8920–8930

    Article  CAS  Google Scholar 

  4. Ren Y, Lin L, Ma J, Yang J, Feng J, Fan Z (2015) Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water. Appl Catal B 165:572–578

    Article  CAS  Google Scholar 

  5. Chen M, Mo L, Cui Z, Zhang Z (2019) Magnetic nanocatalysts: synthesis and application in multicomponent reactions. Curr Opin Green Sustain Chem 15:27–37

    Article  Google Scholar 

  6. Zhang Q, Yang X, Guan J (2019) Applications of magnetic nanomaterials in heterogeneous catalysis. ACS Appl Nano Mater 2:4681–4697

    Article  CAS  Google Scholar 

  7. Baruwati B, Guin D, Manorama S (2007) Pd on surface-modified NiFe2O4 nanoparticles: a magnetically recoverable catalyst for Suzuki and Heck reactions. Org Lett 9:5377–5380

    Article  CAS  Google Scholar 

  8. Demirelli M, Karaoğlu E, Baykal A, Sözeri H, Uysal E (2014) Synthesis, characterization and catalytic activity of CoFe2O4-APTES-Pd magnetic recyclable catalyst. J Alloys Comp, 582201−582207

  9. Saire-Saire S, Barbosa E, Garcia D, Andrade L, Garcia-Segura S, Camargo P, Alarcon H (2019) Green synthesis of Au decorated CoFe2O4 nanoparticles for catalytic reduction of 4-nitrophenol and dimethylphenylsilane oxidation. RSC Adv 9:22116–22123

    Article  CAS  Google Scholar 

  10. Sun W, Qiao K, Liu J, Cao L, Gong X, Yang J (2016) Pt-doped NiFe2O4 spinel as a highly efficient catalyst for H2 selective catalytic reduction of NO at room temperature. ACS Comb Sci 18:195–202

    Article  CAS  Google Scholar 

  11. Chen Z, Wang L, Xu H, Wen Q (2020) Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A. Chem Eng J 389:124345

    Article  CAS  Google Scholar 

  12. Gholinejad M, Aminianfar A (2015) Palladium nanoparticles supported on magnetic copper ferrite nanoparticles: the synergistic effect of palladium and copper for cyanation of aryl halides with K4[Fe(CN)6]. J Mol Catal A 397:106–113

    Article  CAS  Google Scholar 

  13. Goyal A, Bansal S, Singhal S (2014) Facile reduction of nitrophenols: comparative catalytic efficiency of MFe2O4 (M = Ni, Cu, Zn) nano ferrites. Int J Hydrogen Energy 39:4895–4908

    Article  CAS  Google Scholar 

  14. Li Y, Shen J, Hu Y, Qiu S, Min G, Song Z, Sun Z, Li C (2015) General flame approach to chainlike MFe2O4 spinel (M = Cu, Ni Co, Zn) nanoaggregates for reduction of nitroaromatic compounds. Ind Eng Chem Res 54:9750–9757

    Article  CAS  Google Scholar 

  15. Dey C, De D, Nandi M, Goswami M (2020) A high performance recyclable magnetic CuFe2O4 nanocatalyst for facile reduction of 4-nitrophenol. Mater Chem Phy 242:122237

    Article  CAS  Google Scholar 

  16. Amini M, Kafshdouzsani M, Akbari A, Gautam S, Shim C, Chae K (2018) Spinel copper ferrite nanoparticles: preparation, characterization and catalytic activity. Appl Organomet Chem 32:e4470

    Article  Google Scholar 

  17. Zarei M (2020) CuFe2O4 nanoparticles catalyze the reaction of alkynes and nitrones for the synthesis of 2-azetidinones. New J Chem 44:17341–17345

    Article  CAS  Google Scholar 

  18. Wang L, Hu G, Wang Z, Wang B, Song Y, Tang H (2015) Highly efficient and selective degradation of methylene blue from mixed aqueous solution by using monodisperse CuFe2O4 nanoparticles. RSC Adv 5:73327–73332

    Article  CAS  Google Scholar 

  19. Feng J, Su L, Ma Y, Ren C, Guo Q, Chen X (2013) CuFe2O4 magnetic nanoparticles: a simple and efficient catalyst for the reduction of nitrophenol. Chem Eng J 221:16–24

    Article  CAS  Google Scholar 

  20. Jiang HL, Xu Q (2011) Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem 21:13705–13725

    Article  CAS  Google Scholar 

  21. Guo Y, Zhang L, Liu X, Li B, Tang D, Liu W, Qin W (2016) Synthesis of magnetic core-shell carbon dots@MFe2O4 (M = Mn, Zn and Cu) hybrid materials and their catalytic properties. J Mater Chem A 4:4044–4055

    Article  CAS  Google Scholar 

  22. Wang J, Yu B, Wang W, Cai X (2019) Facile synthesis of carbon dots-coated CuFe2O4 nanocomposites as a reusable catalyst for highly efficient reduction of organic pollutants. Catal Commun 126:35–39

    Article  CAS  Google Scholar 

  23. Zhao Y, He G, Dai W, Chen H (2014) High catalytic activity in the phenol hydroxylation of magnetically separable CuFe2O4-reduced graphene oxide. Ind Eng Chem Res 53:12566–12574

    Article  CAS  Google Scholar 

  24. Guo X, Wang K, Li D, Qin J (2017) Heterogeneous photo-Fenton processes using graphite carbon coating hollow CuFe2O4 spheres for the degradation of methylene blue. Appl Sur Sci 420:792–801

    Article  CAS  Google Scholar 

  25. Wang L, Bock D, Li J, Stach E, Marschilok A, Takeuchi K, Takeuch E (2018) Synthesis and characterization of CuFe2O4 nano/submicron wire-carbon nanotube composites as binder-free anodes for Li-ion batteries. ACS Appl Mater Interfaces 10:8770–8785

    Article  CAS  Google Scholar 

  26. Ma S, Feng J, Qin W, Ju Y, Chen X (2015) CuFe2O4@PDA magnetic nanomaterials with a core-shell structure: synthesis and catalytic application in the degradation of methylene blue in water. RSC Adv 5:53514–53523

    Article  CAS  Google Scholar 

  27. Manikandan V, Mirzaei A, Sikarwar S, Yadav B, Vigneselvan S, Vanitha A, Chandrasekaran J (2020) The rapid response and high sensitivity of a ruthenium-doped copper ferrite thin film (Ru-CuFe2O4) sensor. RSC Adv 10:13611–13615

    Article  CAS  Google Scholar 

  28. Zhao C, Lan W, Gong H, Bai J, Ramachandran R, Liu S, Wang F (2018) Highly sensitive acetone-sensing properties of Pt-decorated CuFe2O4 nanotubes prepared by electrospinning. Ceram Int 44:2856–2863

    Article  CAS  Google Scholar 

  29. Kumar A, Srivastava R (2020) Pd-decorated magnetic spinels for selective catalytic reduction of furfural: interplay of a framework-substituted transition metal and solvent in selective reduction. ACS Appl Energy Mater 3:9928–9939

    Article  CAS  Google Scholar 

  30. Lin L, Cui H, Zeng G, Chen M, Zhang H, Xu M, Shen X, Bortolini C, Dong M (2013) Ag-CuFe2O4 magnetic hollow fibers for recyclable antibacterial materials. J Mater Chem B 1:2719–2723

    Article  CAS  Google Scholar 

  31. Li Z, Guo C, Lyu J, Hu Z, Ge M (2019) Tetracycline degradation by persulfate activated with magnetic Cu/CuFe2O4 composite: efficiency, stability, mechanism and degradation pathway. J Hazard Mater 373:85–96

    Article  CAS  Google Scholar 

  32. Gu Z, Li S, **ong Z, Xu H, Gao F, Du Y (2018) Rapid synthesis of platinum-ruthenium bimetallic nanoparticles dispersed on carbon support as improved electrocatalysts for ethanol oxidation. J Colloid Interface Sci 521:111–118

    Article  CAS  Google Scholar 

  33. Ye W, Yu J, Zhou Y, Gao D, Wang D, Wang C, Xue D (2016) Green synthesis of Pt-Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl Catal B 181:371–378

    Article  CAS  Google Scholar 

  34. Rong H, Cai S, Niu Z, Li Y (2013) Composition-dependent catalytic activity of bimetallic nanocrystals: AgPd-catalyzed hydrodechlorination of 4-chlorophenol. ACS Catal 3:1560–1563

    Article  CAS  Google Scholar 

  35. Censabella M, Torrisi V, Boninelli S, Bongiorno C, Grimaldi MG, Ruffino F (2019) Laser ablation synthesis of mono- and bimetallic Pt and Pd nanoparticles and fabrication of Pt-Pd/Graphene nanocomposites. Appl Surf Sci 475:494–503

    Article  CAS  Google Scholar 

  36. Zhang H, Xu L, Tian Y, Jiao A, Li S, Liu X, Chen M, Chen F (2019) Convenient synthesis of 3D fluffy PtPd nanocorals loaded on 2D h-BN supports as highly efficient and stable electrocatalysts for alcohol oxidation reaction. ACS Omega 4:11163–11172

    Article  CAS  Google Scholar 

  37. Zhang P, Li R, Huang Y, Chen Q (2014) A novel approach for the in situ synthesis of Pt-Pd nanoalloys supported on Fe3O4@C core-shell nanoparticles with enhanced catalytic activity for reduction reactions. ACS Appl Mater Interfaces 6:2671–2678

    Article  CAS  Google Scholar 

  38. Cheng C, Wen Y, Xu X, Gu H (2009) Tunable synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size. J Mater Chem 19:8782–8788

    Article  CAS  Google Scholar 

  39. Guo S, Dong S, Wang E (2009) A general route to construct diverse multifunctional Fe3O4/metal hybrid nanostructures. Chem Eur J 15:2416–2424

    Article  CAS  Google Scholar 

  40. Du X, Luo S, Du H, Tang M, Huang X, Shen P (2016) Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for methanol oxidation reaction. J Mater Chem A 4:1579–1585

    Article  CAS  Google Scholar 

  41. Yuan M, Liu A, Zhao M, Dong W, Zhao T, Wang J, Tang W (2014) Bimetallic PdCu nanoparticle decorated three-dimensional grapheme hydrogel for non-enzymatic amperometric glucose sensor. Sens Actuators B 190:707–714

    Article  CAS  Google Scholar 

  42. Pan Y, Guo X, Li M, Liang Y, Wu Y, Wen Y, Yang H (2015) Construction of dandelion-like clusters by PtPd nanoseeds for elevating ethanol eletrocatalytic oxidation. Electrochim Acta 159:40–45

    Article  CAS  Google Scholar 

  43. Yao K, Zhao C, Wang N, Li T, Lu W, Wang J (2020) An aqueous synthesis of porous PtPd nanoparticles with reversed bimetallic structures for highly efficient hydrogen generation from ammonia borane hydrolysis. Nanoscale 12:638–647

    Article  CAS  Google Scholar 

  44. Wu J, Shan S, Cronk H, Chang F, Kareem H, Zhao Y, Luo J, Petkov V, Zhong C (2017) Understanding composition-dependent synergy of PtPd alloy nanoparticles in electrocatalytic oxygen reduction reaction. J Phys Chem C 121:14128–14136

    Article  CAS  Google Scholar 

  45. Zheng Y, Qiao J, Yuan J, Shen J, Wang A, Huang S (2018) Controllable synthesis of PtPd nanocubes on grapheme as advanced catalysts for ethanol oxidation. Int J Hydrogen Energy 43:4902–4911

    Article  CAS  Google Scholar 

  46. Zhang Y, Bu L, Jiang K, Guo S, Huang X (2016) Concave Pd-Pt core-shell nanocrystals with ultrathin Pt shell feature and enhanced catalytic performance. Small 12:706–712

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Shaanxi Province (No. 2018JM2032) and the Key Research and Development Program of Shaanxi Province (No. 2020ZDLGY11-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqi Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Liu, Y., Du, Q. et al. PtPd alloy nanoparticles supported on CuFe2O4 submicrospheres with enhanced synergistic catalysis for reduction of p-nitrothiophenol. J Mater Sci 57, 18827–18838 (2022). https://doi.org/10.1007/s10853-022-07770-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07770-z

Navigation