Log in

Three-dimensional ordered macroporous ceria–lanthanum cobaltate composite as efficient catalyst to activate peroxymonosulfate for N,N-dimethylformamide degradation

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the three-dimensional ordered microporous (3DOM) ceria–lanthanum cobaltate composite (CeO2-3DOM LaCoO3) with peroxymonosulfate (PMS) activation function was prepared by colloidal crystal template method combined with impregnation method. The catalyst has a 3DOM structure with a specific surface area of 67.33 m2 g−1, 8.049 times of LaCoO3 prepared by sol–gel method. CeO2 was uniformly dispersed on the surface of 3DOM LaCoO3. CeO2-3DOM LaCoO3 has an excellent catalytic effect in PMS activation to degrade N, N-Dimethylformamide (DMF). When the DMF initial concentration was 100 mg L−1, the initial pH was 7, the PMS dosage was 2000 mg L−1, and the catalyst dosage was 400 mg L−1, DMF degradation percentage reached 100% in 30 min, and the catalyst maintained high activity over a wide pH range. CeO2-3DOM LaCoO3 still had high activity when it coexists with Ca2+, Mg2+, Cl, HCO3, H2PO4 and NO3. In addition, it has a generally high catalytic degradation efficiency for methylene blue (MB), urotropine (UR), phenol (PH) and bisphenol A (BPA). After a series of characterization, detection and analysis, we proposed a potential mechanism for the CeO2-3DOM LaCoO3/PMS reaction system to degrade DMF and found that singlet oxygen (1O2), sulfate radical (\(SO_{{4}}^{ - } \cdot\)) and hydroxyl radical (·OH) play essential roles in the degradation process. DMF decay followed pseudo-first-order reaction kinetics. The above results suggested that the CeO2-3DOM LaCoO3 would be a promising candidate catalyst for practical wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Zhang Z, Xu S, Wu Y, Shi S, **ao G (2021) Recent advances of pervaporation separation in DMF/H2O solutions: a review. Membranes 11(6):455

    Article  CAS  Google Scholar 

  2. Bhojani G, Jani S, Saha NK (2022) Facile biodegradation of N,N-dimethylformamide, N,N-dimethylacetamide and N-methyl-2-pyrrolidone by source-derived Bacillus strain APS1 for water reclamation and reuse. J Clean Prod 334:130098

    Article  CAS  Google Scholar 

  3. Kong Z, Li L, Kurihara R, Kubota K, Li YY (2018) Anaerobic treatment of N,N-dimethylformamide-containing wastewater by co-culturing two sources of inoculum. Water Res 139:228–239

    Article  CAS  Google Scholar 

  4. Li L, Kong Z, Xue Y, Wang T, Kato H, Li YY (2020) A comparative long-term operation using up-flow anaerobic sludge blanket (UASB) and anaerobic membrane bioreactor (AnMBR) for the upgrading of anaerobic treatment of N,N-dimethylformamide-containing wastewater. Sci Total Environ 699:134370

    Article  CAS  Google Scholar 

  5. Kong Z, Li L, Li YY (2018) Characterization and variation of microbial community structure during the anaerobic treatment of N,N-dimethylformamide-containing wastewater by UASB with artificially mixed consortium. Bioresour Technol 268:434–444

    Article  CAS  Google Scholar 

  6. Dou P, Song J, Zhao S, Xu S, Li X, He T (2019) Novel low cost hybrid extraction-distillation-reverse osmosis process for complete removal of N,N-dimethylformamide from industrial wastewater. Process Saf Environ Prot 130:317–325

    Article  CAS  Google Scholar 

  7. Zhaobo C, Su H, Hu D, Jia F, Li Z, Cui Y et al (2018) Effect of organic loading rate on the removal of DMF, MC and IPA by a pilot-scale AnMBR for treating chemical synthesis-based antibiotic solvent wastewater. Chemosphere 198:49–58

    Article  Google Scholar 

  8. Chen Z, Xu J, Hu D, Cui Y, Wu P, Ge H et al (2018) Performance and kinetic model of degradation on treating pharmaceutical solvent wastewater at psychrophilic condition by a pilot-scale anaerobic membrane bioreactor. Bioresour Technol 269:319–328

    Article  CAS  Google Scholar 

  9. Arumugasamy SK, Ramakrishnan S, Yoo DJ, Govindaraju S, Yun K (2022) Tuning the interfacial electronic transitions of bi-dimensional nanocomposites (pGO/ZnO) towards photocatalytic degradation and energy application. Environ Res 204:112050

    Article  CAS  Google Scholar 

  10. Kumar RS, Govindan K, Ramakrishnan S, Kim AR, Kim JS, Yoo DJ (2021) Fe3O4 nanorods decorated on polypyrrole/reduced graphene oxide for electrochemical detection of dopamine and photocatalytic degradation of acetaminophen. Appl Surf Sci 556:149765

    Article  Google Scholar 

  11. **ong Z, Jiang Y, Wu Z, Yao G, Lai B (2021) Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: a review. Chem Eng J 421:127863

    Article  CAS  Google Scholar 

  12. Liang S, Zhu L, Hua J, Duan W, Yang PT, Wang SL et al (2020) Fe2+/HClO reaction produces FeIVO2+: an enhanced advanced oxidation process. Environ Sci Technol 54(10):6406–6414

    Article  CAS  Google Scholar 

  13. Kim J, Zhang T, Liu W, Du P, Dobson JT, Huang CH (2019) Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation. Environ Sci Technol 53(22):13312–13322

    Article  Google Scholar 

  14. Yang Q, Ma Y, Chen F et al (2019) Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem Eng J 378:122149

    Article  CAS  Google Scholar 

  15. Zazou H, Afanga H, Akhouairi S, Ouchtak H, Addi AA, Akbour RA et al (2019) Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process. J Water Process Eng 28:214–221

    Article  Google Scholar 

  16. Hu P, Long M (2016) Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Appl Catal, B 181:103–117

    Article  CAS  Google Scholar 

  17. Giannakis S, Lin KYA, Ghanbari F (2021) A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem Eng J 406:127083

    Article  CAS  Google Scholar 

  18. Amor C, Fernandes JR, Lucas MS, Peres JA (2021) Hydroxyl and sulfate radical advanced oxidation processes: application to an agro-industrial wastewater. Environ Technol Innovation 21:101183

    Article  CAS  Google Scholar 

  19. Zhang T, Chen Y, Wang Y, Le Roux J, Yang Y, Croue JP (2014) Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environ Sci Technol 48(10):5868–5875

    Article  CAS  Google Scholar 

  20. Wang X, Wang Z, Tang Y, **ao D, Zhang D, Huang Y et al (2019) Oxidative degradation of iodinated X-ray contrast media (iomeprol and iohexol) with sulfate radical: an experimental and theoretical study. Chem Eng J 368:999–1012

    Article  CAS  Google Scholar 

  21. Zhang BT, Zhang Y, Teng Y, Fan M (2015) Sulfate radical and its application in decontamination technologies. Crit Rev Environ Sci Technol 45(16):1756–1800

    Article  CAS  Google Scholar 

  22. Yang Q, Ma Y, Chen F, Yao F, Sun J, Wang S et al (2019) Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem Eng J 378:122149

    Article  CAS  Google Scholar 

  23. Ren Y, Lin L, Ma J, Yang J, Feng J, Fan Z (2015) Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M= Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water. Appl Catal, B 165:572–578

    Article  CAS  Google Scholar 

  24. Chen L, Ji H, Qi J, Huang T, Wang CC, Liu W (2021) Degradation of acetaminophen by activated peroxymonosulfate using Co(OH)2 hollow microsphere supported titanate nanotubes: Insights into sulfate radical production pathway through CoOH+ activation. Chem Eng J 406:126877

    Article  CAS  Google Scholar 

  25. Hou S, Ling L, Dionysiou DD, Wang Y, Huang J, Guo K et al (2018) Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter. Environ Sci Technol 52(11):6317–6325

    Article  CAS  Google Scholar 

  26. Oh WD, Dong Z, Lim TT (2016) Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Appl Catal, B 194:169–201

    Article  CAS  Google Scholar 

  27. Huang GX, Si JY, Qian C, Wang WK, Mei SC, Wang CY, Yu HQ (2018) Ultrasensitive fluorescence detection of peroxymonosulfate based on a sulfate radical-mediated aromatic hydroxylation. Anal Chem 90(24):14439–14446

    Article  CAS  Google Scholar 

  28. Oh WD, Dong Z, Ronn G, Lim TT (2017) Surface-active bismuth ferrite as superior peroxymonosulfate activator for aqueous sulfamethoxazole removal: performance, mechanism and quantification of sulfate radical. J Hazard Mater 325:71–81

    Article  CAS  Google Scholar 

  29. Yao Y, Cai Y, Wu G, Wei F, Li X, Chen H, Wang S (2015) Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3-xO4) for Fenton-like reaction in water. J Hazard Mater 296:128–137

    Article  CAS  Google Scholar 

  30. Wang Y, Ji H, Liu W, Xue T, Liu C, Zhang Y et al (2020) Novel CuCo2O4 composite spinel with a meso-macroporous nanosheet structure for sulfate radical formation and benzophenone-4 degradation: interface reaction, degradation pathway, and DFT calculation. ACS Appl Mater Interfaces 12(18):20522–20535

    Article  CAS  Google Scholar 

  31. Khan S, He X, Khan JA, Khan HM, Boccelli DL, Dionysiou DD (2017) Kinetics and mechanism of sulfate radical-and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system. Chem Eng J 318:135–142

    Article  CAS  Google Scholar 

  32. **ao R, Luo Z, Wei Z, Luo S, Spinney R, Yang W, Dionysiou DD (2018) Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr Opin Chem Eng 19:51–58

    Article  Google Scholar 

  33. Yang Y, Jiang J, Lu X, Ma J, Liu Y (2015) Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process. Eviron Sci Technol 49(12):7330–7339

    Article  CAS  Google Scholar 

  34. Liu G, Li J, Yang K, Tang W, Liu H, Yang J et al (2015) Effects of cerium incorporation on the catalytic oxidation of benzene over flame-made perovskite La1-xCexMnO3 catalysts. Particuology 19:60–68

    Article  CAS  Google Scholar 

  35. Bai Y, Wang Y, Yuan W, Sun W, Zhang G, Zheng L et al (2019) Catalytic performance of perovskite-like oxide doped cerium (La2xCexCoOy) as catalysts for dry reforming of methane. Chin J Chem Eng 27(2):379–385

    Article  CAS  Google Scholar 

  36. Sun J, Zhao Z, Li Y, Yu X, Zhao L, Li J et al (2020) Synthesis and catalytic performance of macroporous La1xCexCoO3 perovskite oxide catalysts with high oxygen mobility for catalytic combustion of soot. J Rare Earths 38(6):584–593

    Article  CAS  Google Scholar 

  37. Guldal NO, Figen HE, Baykara SZ (2017) Production of hydrogen from hydrogen sulfide with perovskite type catalysts: LaMO3. Chem Eng J 313:1354–1363

    Article  CAS  Google Scholar 

  38. Wang Y, Xue Y, Zhao C, Zhao D, Liu F, Wang K, Dionysiou DD (2016) Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies. Chem Eng J 300:300–305

    Article  CAS  Google Scholar 

  39. Zhu J, Zhao Y, Tang D, Zhao Z, Carabineiro SA (2016) Aerobic selective oxidation of alcohols using La1xCexCoO3 perovskite catalysts. J Catal 340:41–48

    Article  CAS  Google Scholar 

  40. Yang EH, Kim NY, Noh YS, Lim SS, Jung JS, Lee JS et al (2015) Steam CO2 reforming of methane over La1xCexNiO3 perovskite catalysts. Int J Hydrogen Energy 40(35):11831–11839

    Article  CAS  Google Scholar 

  41. **e S, Deng J, Liu Y, Zhang Z, Yang H, Jiang Y et al (2015) Excellent catalytic performance, thermal stability, and water resistance of 3DOM Mn2O3-supported Au–Pd alloy nanoparticles for the complete oxidation of toluene. Appl Catal, A 507:82–90

    Article  CAS  Google Scholar 

  42. Chang Y, Yu K, Zhang C, Yang Z, Feng Y, Hao H et al (2017) Ternary CdS/Au/3DOM-SrTiO3 composites with synergistic enhancement for hydrogen production from visible-light photocatalytic water splitting. Appl Catal, B 215:74–84

    Article  CAS  Google Scholar 

  43. Wang X, Liu M, Yu H, Zhang H, Yan S, Zhang C, Liu S (2020) Oxygen-deficient 3D-ordered multistage porous interfacial catalysts with enhanced water oxidation performance. J Mater Chem A 8(43):22886–22892

    Article  CAS  Google Scholar 

  44. Kamonsuangkasem K, Therdthianwong S, Therdthianwong A, Thammajak N (2017) Remarkable activity and stability of Ni catalyst supported on CeO2–Al2O3 via CeAlO3 perovskite towards glycerol steam reforming for hydrogen production. Appl Catal, B 218:650–663

    Article  CAS  Google Scholar 

  45. Huang Y, Lu Y, Lin Y, Mao Y, Ouyang G, Liu H et al (2018) Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants. J Mater Chem A 6(48):24740–24747

    Article  CAS  Google Scholar 

  46. Kannan R, Kim AR, Eo SK, Kang SH, Yoo DJ (2017) Facile one-step synthesis of cerium oxide-carbon quantum dots/RGO nanohybrid catalyst and its enhanced photocatalytic activity. Eram Int 43(3):3072–3079

    CAS  Google Scholar 

  47. Huang Y, Long B, Tang M, Rui Z, Balogun MS, Tong Y, Ji H (2016) Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl Catal, B 181:779–787

    Article  CAS  Google Scholar 

  48. Arandiyan H, Dai H, Ji K, Sun H, Li J (2015) Pt nanoparticles embedded in colloidal crystal template derived 3D ordered macroporous Ce0.6Zr0.3Y0.1O2: highly efficient catalysts for methane combustion. ACS Catal 5(3):1781–1793

    Article  CAS  Google Scholar 

  49. Li X, Dai H, Deng J, Liu Y, Zhao Z, Wang Y et al (2013) In situ PMMA-templating preparation and excellent catalytic performance of Co3O4/3DOM La0.6Sr0.4CoO3 for toluene combustion. Appl Catal, A 458:11–20

    Article  CAS  Google Scholar 

  50. Wang S, Xu X, Zhu J, Tang D, Zhao Z (2019) Effect of preparation method on physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation. J Rare Earths 37(9):970–977

    Article  CAS  Google Scholar 

  51. Vinothkannan M, Karthikeyan C, Kim AR, Yoo DJ (2015) One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochim Acta, Part A 136:256–264

    Article  CAS  Google Scholar 

  52. Mao M, Xu J, Li L, Zhao S, Li X, Li Y, Liu Z (2019) High performance hydrogen production of MoS2-modified perovskite LaNiO3 under visible light. Ionics 25(10):4533–4546

    Article  CAS  Google Scholar 

  53. Su C, Duan X, Miao J, Zhong Y, Zhou W, Wang S, Shao Z (2017) Mixed conducting perovskite materials as superior catalysts for fast aqueous-phase advanced oxidation: a mechanistic study. ACS Catal 7(1):388–397

    Article  CAS  Google Scholar 

  54. Li J, Miao J, Duan X, Dai J, Liu Q, Wang S et al (2018) Fine-tuning surface properties of perovskites via nanocompositing with inert oxide toward develo** superior catalysts for advanced oxidation. Adv Funct Mater 28(44):1804654

    Article  Google Scholar 

  55. Wang Z, Yuan C, Zhu B, Feng Q, Liu F, Xu J et al (2018) Sintering behavior, phase evolutions and microwave dielectric properties of LaGaO3–SrTiO3 ceramics modified by CeO2 additives. Ceram Int 44(6):6601–6606

    Article  CAS  Google Scholar 

  56. Lukashuk L, Yigit N, Rameshan R, Kolar E, Teschner D, Hävecker M et al (2018) Operando insights into CO oxidation on cobalt oxide catalysts by NAP-XPS, FTIR, and XRD. ACS Catal 8(9):8630–8641

    Article  CAS  Google Scholar 

  57. Wu X, Wang C, Wei Y, **ong J, Zhao Y, Zhao Z et al (2019) Multifunctional photocatalysts of Pt-decorated 3DOM perovskite-type SrTiO3 with enhanced CO2 adsorption and photoelectron enrichment for selective CO2 reduction with H2O to CH4. J Catal 377:309–321

    Article  CAS  Google Scholar 

  58. Shin TH, Ida S, Ishihara T (2011) Doped CeO2–LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells. J Am Chem Soc 133(48):19399–19407

    Article  CAS  Google Scholar 

  59. Zhang X, Hou F, Li H, Yang Y, Wang Y, Liu N, Yang Y (2018) A strawsheave-like metal organic framework Ce-BTC derivative containing high specific surface area for improving the catalytic activity of CO oxidation reaction. Microporous Mesoporous Mater 259:211–219

    Article  CAS  Google Scholar 

  60. Ravikovitch PI, Neimark AV (2001) Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids Surf, A 187:11–21

    Article  Google Scholar 

  61. Devi L, Craje M, Thüne P, Ptasinski KJ, Janssen FJ (2005) Olivine as tar removal catalyst for biomass gasifiers: catalyst characterization. Appl Catal, A 294(1):68–79

    Article  CAS  Google Scholar 

  62. Li J, Yang Z, Li S, ** Q, Zhao J (2020) Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts. J Ind Eng Chem 82:1–16

    Article  Google Scholar 

  63. Manibalan G, Murugadoss G, Thangamuthu R, Kumar RM, Jayavel R (2019) Facile synthesis of heterostructure CeO2-TiO2 nanocomposites for enhanced electrochemical sensor and solar cell applications. J Alloys Compd 773:449–461

    Article  CAS  Google Scholar 

  64. Rodriguez-Narvaez OM, Pacheco-Alvarez MOA, Wróbel K, Páramo-Vargas J, Bandala ER, Brillas E, Peralta-Hernandez JM (2020) Development of a Co2+/PMS process involving target contaminant degradation and PMS decomposition. Int J Environ Sci Technol 17(1):17–26

    Article  CAS  Google Scholar 

  65. Huang YH, Huang YF, Huang CI, Chen CY (2009) Efficient decolorization of azo dye reactive black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst. J Hazard Mater 170(2–3):1110–1118

    Article  CAS  Google Scholar 

  66. Ling SK, Wang S, Peng Y (2010) Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate. J Hazard Mater 178(1–3):385–389

    Article  CAS  Google Scholar 

  67. Wang J, Fan S, Xu Z, Gao J, Huang Y, Yu X, Gan H (2022) Kinetic and mechanistic insights into the degradation of clofibric acid in saline wastewater by Co2+/PMS process: a modeling and theoretical study. RSC Adv 12(25):16174–16183

    Article  CAS  Google Scholar 

  68. Wang Z, Huang Z, Brosnahan JT, Zhang S, Guo Y, Guo Y et al (2019) Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion. Environ Sci Technol 53(9):5349–5358

    Article  CAS  Google Scholar 

  69. Hojo H, Mizoguchi T, Ohta H, Findlay SD, Shibata N, Yamamoto T, Ikuhara Y (2010) Atomic structure of a CeO2 grain boundary: the role of oxygen vacancies. Nano Lett 10(11):4668–4672

    Article  CAS  Google Scholar 

  70. Merino NA, Barbero BP, Eloy P, Cadús LE (2006) La1-xCaxCoO3 perovskite-type oxides: identification of the surface oxygen species by XPS. Appl Surf Sci 253(3):1489–1493

    Article  CAS  Google Scholar 

  71. Su Z, Yang W, Wang C, **ong S, Cao X, Peng Y et al (2020) Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion. Environ Sci Technol 54(19):12684–12692

    Article  CAS  Google Scholar 

  72. Zhao J, Wang Y, Li N, Wang S, Yu J, Li X (2021) Efficient degradation of ciprofloxacin by magnetic γ-Fe2O3–MnO2 with oxygen vacancy in visible-light/peroxymonosulfate system. Chemosphere 276:130257

    Article  CAS  Google Scholar 

  73. **e L, Hao J, Wu Y, **ng S (2022) Non-radical activation of peroxymonosulfate with oxygen vacancy-rich amorphous MnOX for removing sulfamethoxazole in water. Chem Eng J 436:135260

    Article  CAS  Google Scholar 

  74. Ji K, Deng J, Zang H, Han J, Arandiyan H, Dai H (2015) Fabrication and high photocatalytic performance of noble metal nanoparticles supported on 3DOM InVO4-BiVO4 for the visible-light-driven degradation of rhodamine B and methylene blue. Appl Catal, B 165:285–295

    Article  CAS  Google Scholar 

  75. Wang N, Hu Y, Zhang Z (2017) Sustainable catalytic properties of silver nanoparticles supported montmorillonite for highly efficient recyclable reduction of methylene blue. Appl Clay Sci 150:47–55

    Article  CAS  Google Scholar 

  76. Kohantorabi M, Moussavi G, Giannakis S (2021) A review of the innovations in metal-and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants. Chem Eng J 411:127957

    Article  CAS  Google Scholar 

  77. Surendranath Y, Kanan MW, Nocera DG (2010) Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc 132(46):16501–16509

    Article  CAS  Google Scholar 

  78. Hou J, He X, Zhang S, Yu J, Feng M, Li X (2021) Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: a review. Sci Total Environ 770:145311

    Article  CAS  Google Scholar 

  79. Zhao Z, Zhao J, Yang C (2017) Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4–MnO2 catalytic oxidation system. Chem Eng J 327:481–489

    Article  CAS  Google Scholar 

  80. Yang S, **ao T, Zhang J, Chen Y, Li L (2015) Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7 in aqueous solution. Sep Purif Technol 143:19–26

    Article  CAS  Google Scholar 

  81. Guan YH, Ma J, Ren YM, Liu YL, **ao JY, Lin LQ, Zhang C (2013) Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals. Water Res 47(14):5431–5438

    Article  CAS  Google Scholar 

  82. Kong J, Li R, Wang F, Chen P, Liu H, Liu G, Lv W (2018) Sulfate radical-induced transformation of trimethoprim with CuFe2O4/MWCNTs as a heterogeneous catalyst of peroxymonosulfate: mechanisms and reaction pathways. RSC Adv 8(44):24787–24795

    Article  CAS  Google Scholar 

  83. Hammouda SB, Zhao F, Safaei Z, Ramasamy DL, Doshi B, Sillanpää M (2018) Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr2CoFeO6 double perovskite oxide catalyzed peroxymonosulfate: Influence of co-existing chemicals and UV irradiation. Appl Catal B 233:99–111

    Article  Google Scholar 

  84. Li C, Wu J, Peng W, Fang Z, Liu J (2019) Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4/β-FeOOH nanocomposites: coexistence of radical and non-radical reactions. Chem Eng J 356:904–914

    Article  CAS  Google Scholar 

  85. Li J, Zhu W, Gao Y, Lin P, Liu J, Zhang J, Huang T (2022) The catalyst derived from the sulfurized Co-doped metal–organic framework (MOF) for peroxymonosulfate (PMS) activation and its application to pollutant removal. Sep Purif Technol 285:120362

    Article  CAS  Google Scholar 

  86. Luo J, Bo S, An Q, **ao Z, Wang H, Cai W et al (2020) Designing ordered composites with confined Co-N/C layers for efficient pollutant degradation: structure-dependent performance and PMS activation mechanism. Microporous Mesoporous Mater 293:109810

    Article  CAS  Google Scholar 

  87. Hammouda SB, Zhao F, Safaei Z, Babu I, Ramasamy DL, Sillanpää M (2017) Reactivity of novel Ceria–Perovskite composites CeO2–LaMO3 (M = Cu, Fe) in the catalytic wet peroxidative oxidation of the new emergent pollutant ‘Bisphenol F’: characterization, kinetic and mechanism studies. Appl Catal, B 218:119–136

    Article  Google Scholar 

  88. Wang X, Zuo J, Luo Y, Jiang L (2017) New route to CeO2/LaCoO3 with high oxygen mobility for total benzene oxidation. Appl Surf Sci 396:95–101

    Article  CAS  Google Scholar 

  89. Wang F, Lai Y, Fang Q, Li Z, Ou P, Wu P et al (2020) Facile fabricate of novel Co(OH)F@MXenes catalysts and their catalytic activity on bisphenol A by peroxymonosulfate activation: the reaction kinetics and mechanism. Appl Catal B 262:118099

    Article  CAS  Google Scholar 

  90. Li X, Wang Z, Zhang B, Rykov AI, Ahmed MA, Wang J (2016) FexCo3-xO4 nanocages derived from nanoscale metal–organic frameworks for removal of bisphenol A by activation of peroxymonosulfate. Appl Catal B 181:788–799

    Article  CAS  Google Scholar 

  91. Zhang Y, **angshi P, Tian J, Li F, Fan X, Ma L, Zhang R (2021) Synthesis of peroxymonosulfate composite catalyst (Fe0/Fe3O4/biochar) using waterworks sludge and walnut shell for degrading methylene blue. J Environ Chem Eng 9(6):106856

    Article  CAS  Google Scholar 

  92. Zhang T, Ma Q, Zhou M, Li C, Sun J, Shi W, Ai S (2021) Degradation of methylene blue by a heterogeneous Fenton reaction catalyzed by FeCo2O4-NC nanocomposites derived by ZIFs. Powder Technol 383:212–219

    Article  CAS  Google Scholar 

  93. Liu S, Zhang Z, Huang F, Liu Y, Feng L, Jiang J et al (2021) Carbonized polyaniline activated peroxymonosulfate (PMS) for phenol degradation: Role of PMS adsorption and singlet oxygen generation. Appl Catal B 286:119921

    Article  CAS  Google Scholar 

  94. Li J, Xu M, Yao G, Lai B (2018) Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: kinetic, degradation intermediates, and toxicity evaluation. Chem Eng J 348:1012–1024

    Article  CAS  Google Scholar 

  95. Ghanbari F, Moradi M (2017) Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants. Chem Eng J 310:41–62

    Article  CAS  Google Scholar 

  96. Medina OE, Gallego J, Restrepo LG, Cortés FB, Franco CA (2019) Influence of the Ce4+/Ce3+ Redox-couple on the cyclic regeneration for adsorptive and catalytic performance of NiO-PdO/CeO2±δ nanoparticles for n-C7 asphaltene steam gasification. Nanomaterials 9(5):734

    Article  CAS  Google Scholar 

Download references

Funding

Shijiazhuang Science and Technology Research and Development Program (211240043A, 191240263A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zai-xing.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, L., Zai-xing, L., **ao-fei, C. et al. Three-dimensional ordered macroporous ceria–lanthanum cobaltate composite as efficient catalyst to activate peroxymonosulfate for N,N-dimethylformamide degradation. J Mater Sci 57, 16280–16300 (2022). https://doi.org/10.1007/s10853-022-07683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07683-x

Navigation