Log in

Functional study on dendritic structure composite catalyst for enhanced visible light photocatalytic hydrogen production

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

CdS is always regarded as one of the most focused non-noble metal photocatalysts responding to visible light. However, it is difficult to be widely used in the field of photocatalysis because of the rapid recombination of photo-induced carriers. A rational structural design is urgently needed to separate the electron–hole pairs efficiently. Herein, CdS was loaded on NiS nanorod surface to form a dendritic structure CdS/NiS p-n heterojunction for high reactivity of photocatalytic hydrogen production. A maximum hydrogen production rate of 17.1 mmol g−1 h−1 was achieved from 65% CdS/NiS under visible light irradiation. X-ray photoelectron spectroscopy, Mott–Schottky curve, and several photoelectrochemical tests were applied to study the enhancement mechanism. In conclusion, the photocatalytic activity is enhanced mainly because the p-n heterojunction builds a path for the directional charge transfer induced by the internal electric field, which improves the separation efficiency of photo-induced carriers. This research provides suggestions for the design of efficient hydrogen production photocatalysts.

Graphical abstract

CdS is loaded on NiS nanorod to form a dendritic structure CdS/NiS composite catalyst and showed an excellent hydrogen production rate of 17.1 mmol g−1 h−1 which is attributed to the one-way transmission of the photo-induced electrons through p-n heterojunction. NiS is found to be the reaction site of the photo-oxidation reaction but not of reduction reaction, while CdS is the main source of the photoinduced charge carriers and the place where hydrogen generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Boppella R, Choi CH, Moon J, Kim DH (2018) Spatial charge separation on strongly coupled 2D-hybrid of rGO/La2Ti2O7/NiFe-LDH heterostructures for highly efficient noble metal free photocatalytic hydrogen generation. Appl Catal B 239:178–186. https://doi.org/10.1016/j.apcatb.2018.07.063

    Article  CAS  Google Scholar 

  2. Ma DD, Shi J-W, Sun DK et al (2019) Au decorated hollow ZnO@ZnS heterostructure for enhanced photocatalytic hydrogen evolution: the insight into the roles of hollow channel and Au nanoparticles. Appl Catal B 244:748–757. https://doi.org/10.1016/j.apcatb.2018.12.016

    Article  CAS  Google Scholar 

  3. Mu HY, Wan JF, Wu YW, Xu J, Wang L, Cao XJ (2018) Novel polymer supported graphene and molybdenum sulfide as highly efficient cocatalyst for photocatalytic hydrogen evolution. Int J Hydrog Energy 43(39):18105–18114. https://doi.org/10.1016/j.ijhydene.2018.06.129

    Article  CAS  Google Scholar 

  4. Wu YW, Mu HY, Cao XJ, He X (2019) Polymer-supported graphene-TiO2 doped with nonmetallic elements with enhanced photocatalytic reaction under visible light. J Mater Sci 55:1577–1591. https://doi.org/10.1007/s10853-019-04100-8

    Article  CAS  Google Scholar 

  5. Lee JM, Yang JH, Kwon NH, Jo YK, Choy JH, Hwang SJ (2018) Intercalative hybridization of layered double hydroxide nanocrystals with mesoporous g-C3N4 for enhancing visible light-induced H2 production efficiency. Dalton Trans 47:2949–2955. https://doi.org/10.1039/c7dt03466k

    Article  CAS  Google Scholar 

  6. Zhang Y, Wan JF, Zhang CJ, Cao XJ (2022) MoS2 and Fe2O3 co-modify g-C3N4 to improve the performance of photocatalytic hydrogen production. Sci Rep 12(1):3261. https://doi.org/10.1038/s41598-022-07126-2

    Article  CAS  Google Scholar 

  7. Wei ZD, Zhao Y, Fan FT, Li C (2018) The property of surface heterojunction performed by crystal facets for photogenerated charge separation. Comput Mater Sci 153:28–35. https://doi.org/10.1016/j.commatsci.2018.06.022

    Article  CAS  Google Scholar 

  8. Gao C, Low JX, Long R, Kong TT, Zhu JF (2020) **ong YJ (2020) Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem Rev 120(21):12175–12216. https://doi.org/10.1021/acs.chemrev.9b00840

    Article  CAS  Google Scholar 

  9. Ding SC, Lyu ZY, Zhong H et al (2021) An ion-imprinting derived strategy to synthesize single-atom iron electrocatalysts for oxygen reduction. Small 2021(17):2004454. https://doi.org/10.1002/smll.202004454

    Article  CAS  Google Scholar 

  10. Wang SY, Gao YY, Qi Y, Li AL, Fan FT, Li C (2017) Achieving overall water splitting on plasmon-based solid Z-scheme photocatalysts free of redox mediators. J Catal 354:250–257. https://doi.org/10.1016/j.jcat.2017.08.018

    Article  CAS  Google Scholar 

  11. Zhang YH, Dai Rongying Hu (2017) Study of the role of oxygen vacancies as active sites in reduced graphene oxide-modified TiO2. Phys Chem Chem Phys 19(10):7307–7315. https://doi.org/10.1039/c7cp00630f

    Article  CAS  Google Scholar 

  12. Chen RT, Pang S, An HY, Dittrich T, Fan FT, Li C (2019) Giant defect-induced effects on nanoscale charge separation in semiconductor photocatalysts. Nano Lett 19(1):426–432. https://doi.org/10.1021/acs.nanolett.8b04245

    Article  CAS  Google Scholar 

  13. Xu QL, Zhang LY, Cheng B, Fan JJ, Yu JG (2020) S-scheme heterojunction photocatalyst. Chemistry 6(7):1543–1559. https://doi.org/10.1016/j.chempr.2020.06.010

    Article  CAS  Google Scholar 

  14. Kuang PY, Sayed M, Fan JJ, Cheng B, Yu JJ (2020) 3D graphene-based H2-production photocatalyst and electrocatalyst. Adv Energy Mater 10(14):1903802. https://doi.org/10.1002/aenm.201903802

    Article  CAS  Google Scholar 

  15. Guo YC, Liang ZQ, Xue YJ, Wang XY, Zhang XL, Tian J (2022) A cation exchange strategy to construct rod-shell CdS/Cu2S nanostructures for broad spectrum photocatalytic hydrogen production. J Colloid Interface Sci 608:158–163. https://doi.org/10.1016/j.jcis.2021.09.190

    Article  CAS  Google Scholar 

  16. Mandari KK, Son N, Kang M (2022) CuS/Ag2O nanoparticles on ultrathin g-C3N4 nanosheets to achieve high performance solar hydrogen evolution. J Colloid Interface Sci 615:740–751. https://doi.org/10.1016/j.jcis.2022.02.025

    Article  CAS  Google Scholar 

  17. Chen XY, Guo YC, Bian RM et al (2022) Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production. J Colloid Interface Sci 613:644–651. https://doi.org/10.1016/j.jcis.2022.01.079

    Article  CAS  Google Scholar 

  18. Fujishima A, Honda K (1972) Nature 238(5358):37–38. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  19. Luo LF, Wang YD, Huo SP, Lv P, Fang J, Yang Y, Fei B (2019) Cu-MOF assisted synthesis of CuS/CdS(H)/CdS(C): enhanced photocatalytic hydrogen production under visible light. Int J Hydrog Energy 44(59):30965–30973. https://doi.org/10.1016/j.ijhydene.2019.09.136

    Article  CAS  Google Scholar 

  20. Mao SM, Zou YJ, Sun GT et al (2021) Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production. J Colloid Interface Sci 581:1–10. https://doi.org/10.1016/j.jcis.2020.07.121

    Article  CAS  Google Scholar 

  21. Ma DD, Wang ZY, Shi J-W et al (2020) An ultrathin Al2O3 bridging layer between CdS and ZnO boosts photocatalytic hydrogen production. J Mater Chem A 8(21):11031–11042. https://doi.org/10.1039/d0ta03933k

    Article  CAS  Google Scholar 

  22. Liu HW, Chen J, Guo WY, Xu QJ, Min YL (2022) A high efficiency water hydrogen production method based on CdS/WN composite photocatalytic. J Colloid Interface Sci 613:652–660. https://doi.org/10.1016/j.jcis.2022.01.014

    Article  CAS  Google Scholar 

  23. Yang Y, Meng QQ, Jiang XL et al (2020) Photocatalytic performance of NiS/CdS composite with multistage structure. ACS Appl Energy Mater 3(8):7736–7745. https://doi.org/10.1021/acsaem.0c01133

    Article  CAS  Google Scholar 

  24. Sun DK, Shi J-W, Ma DD, Zou YJ, Sun GT, Mao SM, Sun LW, Cheng YH (2020) CdS/ZnS/ZnO ternary heterostructure nanofibers fabricated by electrospinning for excellent photocatalytic hydrogen evolution without co-catalyst. Chinese J Catal 41(9):1421–1429. https://doi.org/10.1016/s1872-2067(20)63576-8

    Article  CAS  Google Scholar 

  25. Gopannagari M, Kumar DP, Park H, Kim EH, Bhavani P, Reddy DA, Kim TK (2018) Influence of surface-functionalized multi-walled carbon nanotubes on CdS nanohybrids for effective photocatalytic hydrogen production. Appl Catal B 236:294–303. https://doi.org/10.1016/j.apcatb.2018.05.009

    Article  CAS  Google Scholar 

  26. Li P, Liu ML, Li JQ et al (2021) Atomic heterojunction-induced accelerated charge transfer for boosted photocatalytic hydrogen evolution over 1D CdS nanorod/2D ZnIn2S4 nanosheet composites. J Colloid Interface Sci 604:500–507. https://doi.org/10.1016/j.jcis.2021.07.041

    Article  CAS  Google Scholar 

  27. Sun GT, **ao B, Shi J-W, Mao SM, Chi H, Ma DD, Cheng YH (2021) Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core-shell p-n heterojunction for significantly enhanced photocatalytic H2 evolution. J Colloid Interface Sci 596:215–224. https://doi.org/10.1016/j.jcis.2021.03.150

    Article  CAS  Google Scholar 

  28. Irfan RM, Tahir MH, Khan SA, Shaheen MA, Ahmed G, Iqbal S (2019) Enhanced photocatalytic H2 production under visible light on composite photocatalyst (CdS/NiSe nanorods) synthesized in aqueous solution. J Colloid Interface Sci 557:1–9. https://doi.org/10.1016/j.jcis.2019.09.014

    Article  CAS  Google Scholar 

  29. Dang YY, Luo L, Wang W, Hu WF, Wen X, Lin KY, Ma BJ (2022) Improving the photocatalytic H2 evolution of CdS by adjusting the (002) crystal facet. J Phys Chem C 126(3):1346. https://doi.org/10.1021/acs.jpcc.1c08777

    Article  CAS  Google Scholar 

  30. Xu J, Yang W-M, Huang S-J, Yin H, Zhang H, Radjenovic P, Yang ZL, Tian Z-Q, Li J-F (2018) CdS core-Au plasmonic satellites nanostructure enhanced photocatalytic hydrogen evolution reaction. Nano Energy 49:363–371. https://doi.org/10.1016/j.nanoen.2018.04.048

    Article  CAS  Google Scholar 

  31. Ren H, Yang J-L, Yang W-M et al (2020) Core-shell-satellite plasmonic photocatalyst for broad-spectrum photocatalytic water splitting. ACS Mater Lett 3(1):69–76. https://doi.org/10.1021/acsmaterialslett.0c00479

    Article  CAS  Google Scholar 

  32. Yang J-L, He Y-L, Ren H et al (2021) Boosting photocatalytic hydrogen evolution reaction using dual plasmonic antennas. ACS Catal 11(9):5047–5053. https://doi.org/10.1021/acscatal.1c00795

    Article  CAS  Google Scholar 

  33. Kumar DP, Song MI, Hong S et al (2017) Optimization of active sites of MoS2 nanosheets using nonmetal do** and exfoliation into few layers on CdS nanorods for enhanced photocatalytic hydrogen production. ACS Sustain Chem Eng 5(9):7651–7658. https://doi.org/10.1021/acssuschemeng.7b00978

    Article  CAS  Google Scholar 

  34. Lakshmana Reddy N, Rao VN, Kumari MM, Ravi P, Sathish M, Shankar MV (2018) Effective shuttling of photoexcitons on CdS/NiO core/shell photocatalysts for enhanced photocatalytic hydrogen production. Mater Res Bull 101:223–231. https://doi.org/10.1016/j.materresbull.2018.01.043

    Article  CAS  Google Scholar 

  35. Kumar DP, Kim EH, Park H et al (2018) Tuning band alignments and charge-transport properties through MoSe2 bridging between MoS2 and cadmium sulfide for enhanced hydrogen production. ACS Appl Mater Interfaces 10(31):26153–26161. https://doi.org/10.1021/acsami.8b02093

    Article  CAS  Google Scholar 

  36. Kumar DP, Seo S, Rangappa AP et al (2022) Ultrathin layered Zn-doped MoS2 nanosheets deposited onto CdS nanorods for spectacular photocatalytic hydrogen evolution. J Alloys Compd 905:164193. https://doi.org/10.1016/j.jallcom.2022.164193

    Article  CAS  Google Scholar 

  37. Ma DD, Wang ZY, Shi J-W et al (2020) Cu-In2S3 nanorod induced the growth of Cu&In co-doped multi-arm CdS hetero-phase junction to promote photocatalytic H2 evolution. Chem Eng J 399:125785. https://doi.org/10.1016/j.cej.2020.125785

    Article  CAS  Google Scholar 

  38. Xue YT, Wu ZS, He XF, Li Q, Yang X, Li LM (2019) Hierarchical fabrication Z-scheme photocatalyst of BiVO4 (040)-Ag@CdS for enhanced photocatalytic properties under simulated sunlight irradiation. J Colloid Interface Sci 548:293–302. https://doi.org/10.1016/j.jcis.2019.04.043

    Article  CAS  Google Scholar 

  39. Lu XY, Tong AM, Luo D et al (2022) Confining single Pt atoms from Pt clusters on multi-armed CdS for enhanced photocatalytic hydrogen evolution. J Mater Chem A. https://doi.org/10.1039/d2ta00198e

    Article  Google Scholar 

  40. Ho TA, Bae C, Joe J et al (2019) Heterojunction photoanode of atomic-layer-deposited MoS2 on single-crystalline CdS nanorod arrays. ACS Appl Mater Interfaces 11(41):37586–37594. https://doi.org/10.1021/acsami.9b11178

    Article  CAS  Google Scholar 

  41. Zhang C, Liu BQ, Cheng X, Guo ZM, Zhuang T, Lv ZG (2020) A CdS@NiS reinforced concrete structure derived from nickel foam for efficient visible-light H2 production. Chem Eng J 393:124774. https://doi.org/10.1016/j.cej.2020.124774

    Article  CAS  Google Scholar 

  42. Tan WY, Li YL, Jiang WS, Gao CL, Zhuang CQ (2020) CdS nanospheres ddecorated with NiS quantum dots as nobel-metal-free photocatalysts for efficient hydrogen evolution. ACS Appl Energy Mater 3(8):8048–8054. https://doi.org/10.1021/acsaem.0c01507

    Article  CAS  Google Scholar 

  43. Zhang J, Qiao SZ, Qi L, Yu JG (2013) Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys Chem Chem Phys 15(29):12088–12094. https://doi.org/10.1039/C3CP50734C

    Article  CAS  Google Scholar 

  44. Guan SD, Fu XL, Zhang Y, Peng ZJ (2018) β-NiS modified CdS nanowires for photocatalytic H2 evolution with exceptionally high efficiency. Chem Sci 9:1574–1585. https://doi.org/10.1039/C7SC03928J

    Article  CAS  Google Scholar 

  45. Cai XY, Mao L, Yang SQ, Han KL (2018) Zhang JY (2018) Ultrafast charge separation for full solar spectrum-activated photocatalytic H2 generation in a black phosphorus-Au-CdS heterostructure. ACS Energy Lett 3(4):932–939. https://doi.org/10.1021/acsenergylett.8b00126

    Article  CAS  Google Scholar 

  46. Li CH, Wang HM, Bonabi NS, Zhang JZ, Fang PF (2018) Visible light driven hydrogen evolution by photocatalytic reforming of lignin and lactic acid using one-dimensional NiS/CdS nanostructures. Appl Catal B 227:229–239. https://doi.org/10.1016/j.apcatb.2018.01.038

    Article  CAS  Google Scholar 

  47. Wang JK, Cao DX, Yang GD, Yang YD, Wang HK (2017) Synthesis of NiS/carbon composites as anodes for high-performance sodium-ion batteries. J Solid State Electr 21(6):3047–3055. https://doi.org/10.1007/s10008-017-3600-9

    Article  CAS  Google Scholar 

  48. Ma S, Xu XM, **e J, Li X (2017) Improved visible-light photocatalytic H2 generation over CdS nanosheets decorated by NiS2 and metallic carbon black as dual earth-abundant cocatalysts. Chinese J Catal 38(10):1970–1980. https://doi.org/10.1016/S1872-2067(17)62965-6

    Article  CAS  Google Scholar 

  49. Molla A, Sahu M, Hussain S (2016) Synthesis of tunable band gap semiconductor nickel sulphide nanoparticles: rapid and round the clock degradation of organic dyes. Sci Rep 6:26034. https://doi.org/10.1038/srep26034

    Article  CAS  Google Scholar 

  50. Fazli Y, Pourmortazavi SM, Kohsari I, Sadeghpur M (2014) Electrochemical synthesis and structure characterization of nickel sulfide nanoparticles. Mat Sci Semicon Proc 27:1369–8001. https://doi.org/10.1016/j.mssp.2014.07.013

    Article  CAS  Google Scholar 

  51. He B, Bie C, Fei XG, Cheng B, Yu JG, Ho WK et al (2021) Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts. Appl Catal B 288:0926–3373. https://doi.org/10.1016/j.apcatb.2021.119994

    Article  CAS  Google Scholar 

  52. Zhang QS, **ao Y, Li YM, Zhao KY, Deng HF, Lou YB, Chen JX, Cheng L (2020) NiS-decorated ZnO/ZnS nanorod heterostructures for enhanced photocatalytic hydrogen production: insight into the role of NiS. Sol RRL 4:1900568. https://doi.org/10.1002/solr.201900568

    Article  CAS  Google Scholar 

  53. Liu ZX, Guo ZG, Yang FS et al (2022) Hyperbranched NixPy/NiCoP arrays based on nickel foam electrode for efficient and stable electrocatalytic hydrogen evolution. Electrocatalysis. https://doi.org/10.1007/s12678-022-00747-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of this work by the National Natural Science Foundation of China (NSFC) (Grant No. 21703180) and the Natural Science Foundation (NSF) of Fujian Province (Grant No. 2021J05193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48613 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Xu, S., Zhang, Y. et al. Functional study on dendritic structure composite catalyst for enhanced visible light photocatalytic hydrogen production. J Mater Sci 57, 15488–15501 (2022). https://doi.org/10.1007/s10853-022-07602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07602-0

Navigation