Log in

High temperature oxidation behavior of laser powder bed fusion printed WC/Inconel 718 composites

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Generally, improving the high temperature oxidation resistance of nickel-based materials is crucial to enhance their service performance in high-temperature service environment. In this study, the microscale WC particles reinforced Inconel 718 composites were processed by laser powder bed fusion (LPBF). The three heat treatment processes including double aging (DA), solution + double aging (SA) and homogenization + double aging (HA) were conducted on the LPBF-processed WC/Inconel 718 composite, respectively. The effects of heat treatment on microstructures and high temperature oxidation behaviors of LPBF-printed WC/Inconel 718 composite were investigated. It was found that the precipitates in LPBF-printed WC/Inconel 718 increased significantly after heat treatments and the contents of γ′ and γ″ precipitates under as-built (AB), DA, SA and HA conditions were 23.9%, 31.9%, 38.2%, 38.3%, respectively. Moreover, more δ phase was precipitated in the DA, while more (Nb, Ti)C was observed in the SA and HA samples. The high temperature oxidation experiments demonstrated that the oxidation kinetics of all samples conformed to the parabolic law and the oxidation resistance showed the tendency of HA > SA > DA > AB. The excellent oxidation resistance of HA-processed WC/Inconel 718 composite was owing to the uniformly distributed dense Cr2O3 and continuous Ni3Nb on the oxide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Amato KN, Gaytan SM, Murr LE, Martinez E, Shindo PW, Hernandez J, Collins S, Medina F (2012) Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater 60(5):2229–2239. https://doi.org/10.1016/j.actamat.2011.12.032

    Article  CAS  Google Scholar 

  2. Aydinöz ME, Brenne F, Schaper M, Schaak C, Tillmann W, Nellesen J, Niendorf T (2016) On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading. Mater Sci Eng A 669:246–258. https://doi.org/10.1016/j.msea.2016.05.089

    Article  CAS  Google Scholar 

  3. Liu FC, Lin X, Song MH, Zhao WW, Cheng J, Hang WD (2011) Effect of intermediate heat treatment temperature on microstructure and notch sensitivity of laser solid formed Inconel 718 superalloy. J Wuhan Univ Technol Mater Sci Ed 26(5):908–913. https://doi.org/10.1007/s11595-011-0335-9

    Article  CAS  Google Scholar 

  4. Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propul Power 22(2):361–374. https://doi.org/10.2514/1.18239

    Article  CAS  Google Scholar 

  5. Han QQ, Gu YC, Gu H, Yin YY, Song J, Zhang ZH, Soe S (2021) Laser powder bed fusion of WC-reinforced Hastelloy-X composite: microstructure and mechanical properties. J Mater Sci 56:1768–1782. https://doi.org/10.1007/s10853-020-05327-6

    Article  CAS  Google Scholar 

  6. Chen H, Gu DD, Dai DH, Alkhayat M, Urban W, Yuan PP, Cao SN, Gasser A, Weisheit A, Kelbassa I, Zhong ML, Poprawe R (2015) Laser additive manufacturing of ultrafine TiC particle reinforced Inconel 625 based composite parts: tailored microstructures and enhanced performance. Mater Sci Eng A 635:118–128. https://doi.org/10.1016/j.msea.2015.03.043

    Article  CAS  Google Scholar 

  7. Gu DD, Zhang HM, Dai DH, **a MJ, Hong C, Poprawe R (2019) Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance. Compos B 163(15):585–597. https://doi.org/10.1016/j.compositesb.2018.12.146

    Article  CAS  Google Scholar 

  8. Li N, Liu W, Wang Y, Zhao ZJ, Yan TQ, Zhang GH, **ong HP (2021) Laser additive manufacturing on metal matrix composites: a review. Chin J Mech Eng 34(1):1–16. https://doi.org/10.1186/s10033-021-00554-7

    Article  CAS  Google Scholar 

  9. Zhang HM, Gu DD, Ma CL, Guo M, Yang JK, Zhang H, Chen HY, Li CP, Svynarenko K, Kosiba K (2021) Understanding tensile and creep properties of WC reinforced nickel-based composites fabricated by selective laser melting. Mater Sci Eng A 802:140431. https://doi.org/10.1016/j.msea.2020.140431

    Article  CAS  Google Scholar 

  10. Gu DD, Shi XY, Poprawe R, Bourell DL, Setchi R, Zhu JH (2021) Material-structure-performance integrated laser-metal additive manufacturing. Science 372(6545):eabg1487. https://doi.org/10.1126/science.abg1487

    Article  CAS  Google Scholar 

  11. Kan WH, Chiu LNS, Lim CVS, Zhu YM, Tian Y, Jiang D, Huang AJ (2022) A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion[J]. J Mater Sci (prepublish). https://doi.org/10.1007/s10853-022-06990-7

    Article  Google Scholar 

  12. Zhang F, Levine LE, Allen AJ, Stoudt MR, Lindwall G, Lass EA, Williams ME, Idel Y, Campbell CE (2018) Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion. Acta Mater 152:200–214. https://doi.org/10.1016/j.actamat.2018.03.017

    Article  CAS  Google Scholar 

  13. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164. https://doi.org/10.1179/1743280411Y.0000000014

    Article  CAS  Google Scholar 

  14. Itziar SM, Tobias F, Tatiana M, Anton T, Daniel A, Alexander U, Arne K, René H, Alexander E, Giovanni B (2021) On the interplay of microstructure and residual stress in LPBF IN718. J Mater Sci 56(9):5845–5867. https://doi.org/10.1007/s10853-020-05553-y

    Article  CAS  Google Scholar 

  15. Raghavan N, Dehoff R, Pannala S, Simunovic S, Kirka M, Turner J, Carlson N, Babu SS (2016) Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing. Acta Mater 112:303–314. https://doi.org/10.1016/j.actamat.2016.03.063

    Article  CAS  Google Scholar 

  16. Tucho WM, Hansen V (2019) Characterization of SLM-fabricated Inconel 718 after solid solution and precipitation hardening heat treatments. J Mater Sci 54(1):823–839. https://doi.org/10.1007/s10853-018-2851-x

    Article  CAS  Google Scholar 

  17. Zhang HM, Gu DD, Ma CL, Guo M, Yang JK, Wang R (2019) Effect of post heat treatment on microstructure and mechanical properties of Ni-based composites by selective laser melting. Mater Sci Eng A 765:138294. https://doi.org/10.1016/j.msea.2019.138294

    Article  CAS  Google Scholar 

  18. Tillmann W, Schaak C, Nellesen J, Schaper M, Aydinöz ME, Hoyer KP (2017) Hot isostatic pressing of IN718 components manufactured by selective laser melting. Addit Manuf 13:93–102. https://doi.org/10.1016/j.addma.2016.11.006

    Article  CAS  Google Scholar 

  19. Haghdadi N, Laleh M, Moyle M, Primig S (2020) Additive manufacturing of steels: a review of achievements and challenges. J Mater Sci 56:64–107. https://doi.org/10.1007/s10853-020-05109-0

    Article  CAS  Google Scholar 

  20. Li S, Wei QS, Shi YS, Zhu ZC, Zhang DQ (2015) Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting[J]. J Mater Sci Technol 31(9):639–649. https://doi.org/10.1016/j.jmst.2016.06.009

    Article  Google Scholar 

  21. Li X, Shi JJ, Wang CH, Cao GH, Russell AM, Zhou ZJ, Li CP, Chen GF (2018) Effect of heat treatment on microstructure evolution of Inconel 718 alloy fabricated by selective laser melting. J Alloys Compd 764:639–649. https://doi.org/10.1016/j.jallcom.2018.06.112

    Article  CAS  Google Scholar 

  22. Schmeiser F, Krohmer E, Wagner C, Schell N, Uhlmann E, Reimers W (2021) In situ microstructure analysis of Inconel 625 during laser powder bed fusion. J Mater Sci 57:9663–9677. https://doi.org/10.1007/s10853-021-06577-8

    Article  CAS  Google Scholar 

  23. Amirjan M, Sakiani H (2019) Effect of scanning strategy and speed on the microstructure and mechanical properties of selective laser melted IN718 nickel-based superalloy. Int J Adv Manuf Technol 103(5):1769–1780. https://doi.org/10.1007/s00170-019-03545-0

    Article  Google Scholar 

  24. Wang YC, Shi J (2019) Texture control of Inconel 718 superalloy in laser additive manufacturing by an external magnetic field. J Mater Sci 54(13):9809–9823. https://doi.org/10.1007/s10853-019-03569-7

    Article  CAS  Google Scholar 

  25. Greene GA, Finfrock CC (2001) Oxidation of inconel 718 in air at high temperatures. Oxid Met 55(5–6):505–521. https://doi.org/10.1023/A:1010359815550

    Article  CAS  Google Scholar 

  26. Sun YZ, Chen L, Li L, Ren XD (2020) High-temperature oxidation behavior and mechanism of Inconel 625 super-alloy fabricated by selective laser melting[J]. Opt Laser Technol 132:106509. https://doi.org/10.1016/j.optlastec.2020.106509

    Article  CAS  Google Scholar 

  27. Condruz MR, Matache G, Paraschiv A, Badea T, Badilita V (2020) High temperature oxidation behavior of selective laser melting manufactured IN625. Metals 10(5):668–686. https://doi.org/10.3390/met10050668

    Article  CAS  Google Scholar 

  28. Parizia S, Marchese G, Rashidi M, Lorusso M, Hryha E, Manfredi D, Biamino S (2020) Effect of heat treatment on microstructure and oxidation properties of Inconel 625 processed by LPBF. J Alloys Compd 846:156418. https://doi.org/10.1016/j.jallcom.2020.156418

    Article  CAS  Google Scholar 

  29. Lan J, Huang H, Mao HJ, Hua L (2020) Phase transformation and grain growth behaviors of superalloy IN718 during heat treatment[J]. Mater Today Commun 24:101347. https://doi.org/10.1016/j.mtcomm.2020.101347

    Article  CAS  Google Scholar 

  30. Li C, White R, Fang XY, Weaver M, Guo YB (2017) Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment. Mater Sci Eng A 705:20–31. https://doi.org/10.1016/j.msea.2017.08.058

    Article  CAS  Google Scholar 

  31. Calandri M, Manfredi D, Calignano F, Ambrosio E, Biamino S, Lupoi R, Ugues D (2018) Solution treatment study of Inconel 718 produced by LPBF additive technique in view of the oxidation resistance. Adv Eng Mater 20(11):1800351. https://doi.org/10.1002/adem.201800351

    Article  CAS  Google Scholar 

  32. Popovich VA, Borisov EV, Popovich AA, Sufiiarov VS, Masaylo DV, Alzina L (2017) Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting. Mater Des 131:12–22. https://doi.org/10.1016/j.matdes.2017.05.065

    Article  CAS  Google Scholar 

  33. Debroy T, David S (1995) Physical processes in fusion welding. Rev Mod Phys 67(1):85–112. https://doi.org/10.1103/RevModPhys.67.85

    Article  CAS  Google Scholar 

  34. Azadian S, Wei LY, Warren R (2004) Delta phase precipitation in Inconel 718. Mater Charact 53(1):7–16. https://doi.org/10.1016/j.matchar.2004.07.004

    Article  CAS  Google Scholar 

  35. Idell Y, Levine LE, Allen AJ, Zhang F, Campbell CE, Olson GB, Gong J, Snyder DR, Deutchman HZ (2016) Unexpected δ-phase formation in additive-manufactured Ni-based superalloy. JOM 68(3):950–959. https://doi.org/10.1007/s11837-015-1772-2

    Article  CAS  Google Scholar 

  36. Yao XL, Moon SK, Lee BY, Bi GB (2018) Effects of the TiC nanoparticle on microstructures and tensile properties of selective laser melted IN718/TiC nanocomposites. IOP Conf Ser Mater Sci Eng 317(1):012074. https://doi.org/10.1088/1757-899X/317/1/012074

    Article  Google Scholar 

  37. Biedunkiewicz A, Figiel P, Biedunkiewicz W, Grzesiak D, Krawczyk M, Stasiukiewicz A (2015) Microstructure and tribocorrosion properties of titanium matrix nanocomposites manufactured by selective laser sintering/melting method. Solid State Phenom 3763(227):247–250. https://doi.org/10.4028/www.scientific.net/SSP.227.247

    Article  CAS  Google Scholar 

  38. Chen HY, Gu DD, Zhang HM, ** LX, Lu TW, Deng L, Kühn U, Kosiba K (2020) Novel WC-reinforced iron-based composites with excellent mechanical properties synthesized by laser additive manufacturing: underlying role of reinforcement weight fraction. J Mater Process Technol 289:116959. https://doi.org/10.1016/j.jmatprotec.2020.116959

    Article  CAS  Google Scholar 

  39. Kang N, Ma WY, Heraud L, Mansori ME, Li FH, Liu M, Liao HL (2017) Selective laser melting of tungsten carbide reinforced maraging steel composite. Addit Manuf 22:104–110. https://doi.org/10.1016/j.addma.2018.04.031

    Article  CAS  Google Scholar 

  40. Ni M, Chen C, Wang XJ, Wang PW, Li RD, Zhang XY, Zhou KC (2017) Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing. Mater Sci Eng A 701:344–351. https://doi.org/10.1016/j.msea.2017.06.098

    Article  CAS  Google Scholar 

  41. Li S, Wei QS, Shi YS, Zhu ZC, Zhang DQ (2015) Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting. J Mater Sci Technol 31(09):946–952. https://doi.org/10.1016/j.jmst.2014.09.020

    Article  CAS  Google Scholar 

  42. Ma CL, Gu DD, Dai DH, Zhang H, Zhang HM, Yang JK, Guo M, Du YX, Gao J (2019) Microstructure evolution and high-temperature oxidation behaviour of selective laser melted TiC/TiAl composites[J]. Surf Coat Technol 375:534–543. https://doi.org/10.1016/j.surfcoat.2019.07.059

    Article  CAS  Google Scholar 

  43. Stott FH, Wood GC, Stringer J (1995) The influence of alloying elements on the development and maintenance of protective scales. Oxid Met 44(1–2):113–145. https://doi.org/10.1007/BF01046725

    Article  CAS  Google Scholar 

  44. Bensch M, Sato A, Warnken N, Affeldt E, Reed RC, Glatzel U (2012) Modelling of high temperature oxidation of alumina-forming single-crystal nickel-base superalloys. Acta Mater 60(15):5468–5480. https://doi.org/10.1016/j.actamat.2012.06.036

    Article  CAS  Google Scholar 

  45. Jia QB, Gu DD (2014) Selective laser melting additive manufactured Inconel 718 superalloy parts: high-temperature oxidation property and its mechanisms. Opt Laser Technol 62:161–171. https://doi.org/10.1016/j.optlastec.2014.03.008

    Article  CAS  Google Scholar 

  46. Kim KS, Yang SS, Kim MS, Lee KA (2021) Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting. J Mater Sci Technol 76:95–103. https://doi.org/10.1016/j.jmst.2020.11.013

    Article  CAS  Google Scholar 

  47. Chen L, Sun YZ, Li L, Ren XD (2020) Effect of heat treatment on the microstructure and high temperature oxidation behavior of TiC/Inconel 625 nanocomposites fabricated by selective laser melting. Corros Sci 169:108606. https://doi.org/10.1016/j.corsci.2020.108606

    Article  CAS  Google Scholar 

  48. Wu G, Dash K, Galano ML, Reilly KAQO (2019) Oxidation studies of Al alloys: part II Al-Mg alloy[J]. Corros Sci 155:97–108. https://doi.org/10.1016/j.corsci.2019.04.018

    Article  CAS  Google Scholar 

  49. Gao R, Ye XX, Yan S, Lu YL, Jiang L, Li ZJ, Zhou XT (2019) Effects of tungsten content on the high-temperature oxidation behavior of Ni–xW–6Cr alloys. Corros Sci 149:87–99. https://doi.org/10.1016/j.corsci.2019.01.008

    Article  CAS  Google Scholar 

  50. Li DS, Dai QX, Cheng XN, Wang RR, Huang Y (2012) High-temperature oxidation resistance of austenitic stainless steel Cr18Ni11Cu3Al3MnNb. J Iron Steel Res Int 19(5):74–78. https://doi.org/10.1016/S1006-706X(12)60103-4

    Article  CAS  Google Scholar 

  51. Clarke DR (2002) Stress generation during high-temperature oxidation of metallic alloys. Curr Opin Solid State Mater Sci 6(3):237–244. https://doi.org/10.1016/S1359-0286(02)00074-8

    Article  CAS  Google Scholar 

  52. Evans HE, Lobb RC (1984) Conditions for the initiation of oxide-scale cracking and spallation. Corros Sci 24(3):209–222. https://doi.org/10.1016/0010-938X(84)90051-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Strengthening Program (No. 2019-JCJQ-JJ-331); National Natural Science Foundation of China (No. 51735005); the 5th Jiangsu Province 333 High Level Talents Training Project (No. BRA2019048); the Priority Academic Program Development of Jiangsu Higher Education Institutions and financial support from Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_0193); Nan**g University of Aeronautics and Astronautics Graduate Innovation Base (Laboratory) Open Fund Project (Grant No. xcxjh20210611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Gu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest that have influenced this work.

Additional information

Handling Editor: Sophie Primig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Gu, D., Zhang, H. et al. High temperature oxidation behavior of laser powder bed fusion printed WC/Inconel 718 composites. J Mater Sci 57, 14119–14134 (2022). https://doi.org/10.1007/s10853-022-07520-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07520-1

Navigation