Log in

Partially reduced graphene oxide-based electrolyte: synthesis and electrochemical capacitance performance

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The increasing demand for higher-energy-density supercapacitors driven by advancements in devices necessitates the development of alternative electrolytes with a higher specific capacity or larger voltage window. Compared with the fruitful results achieved by expanding the voltage window, there is less report on the method of using electrolytes to directly improve the capacitance performance of electrode materials, thereby increasing the energy density of the device. Herein, a new strategy has been developed to prepare electrolytes by mixing partially reduced graphene oxide (PrGO) and polypyrrole into the salt solution (NaClO4), where the PrGO is controlled at the critical state of solid precipitation by adjusting the degree of reduction. Furthermore, density functional theory calculations are also carried out to study the relationship between the band gap of PrGO and the degree of reduction. Since the PrGO-based conductive active group is dissolved in the electrolyte, the electrolyte has the potential to increase the effective area of the solid electrode during the charging and discharging process, thus increasing the capacitance of the device. The specific area capacitance of commercial carbon cloth electrodes in this electrolyte is much higher than that in traditional salt solution electrolyte (1525 vs. 90 mF cm−2). In particular, the cycle performance of the device has also been greatly improved. After 10000 charge–discharge cycles, the device has reached 110.64% of the initial capacitance. Since this electrolyte has no special requirements for electrode materials, this novel electrolyte preparation strategy has broad application prospects in energy storage devices based on supercapacitor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Fang Z, Li P, Yu G (2020) Gel electrocatalysts: an emerging material platform for electrochemical energy conversion. Adv Mater 32(2003191):1–20

    Google Scholar 

  2. Du P, Dong Y, Dong Y, Wang X, Zhang H (2022) Fabrication of uniform MnO2 layer-modified activated carbon cloth for high-performance flexible quasi-solidstate asymmetric supercapacitor. J Mater Sci 57:3497–3512. https://doi.org/10.1007/s10853-021-06728-x

    Article  CAS  Google Scholar 

  3. Chen S, Yu H, Chen L, Jiang H, Li C (2021) Defect-domains enabling VO2 nanosheet arrays with fast charge transfer for 3.0 V aqueous supercapacitors. Chem Eng J 423(130208):1–7

    Google Scholar 

  4. Alshehri SM, Ahmed J, Alhabarah AN, Ahamad T, Ahmad T (2017) Nitrogen-doped cobalt ferrite/carbon nanocomposites for supercapacitor applications. ChemElectroChem 4:2952–2958

    Article  CAS  Google Scholar 

  5. Al-Enizi AM, Ubaidullah M, Ahmed J, Ahama T, Ahmad T, Shaik S, Naushad M (2020) Synthesis of NiOx@NPC composite for high-performance supercapacitor via waste PET plastic-derived Ni-MOF. Compos Part B Eng 183(107655):1-8

    Article  CAS  Google Scholar 

  6. Jadhav S, Kalubarme RS, Terashima C, Kale BB, Godbole V, Fujishima A, Gosavi SW (2019) Manganese dioxide/ reduced graphene oxide composite an electrode material for high-performance solid state supercapacitor. Electrochim Acta 299:34–44

    Article  CAS  Google Scholar 

  7. Wang Y, Su S, Cai L, Qiu B, Wang N, **ong J, Yang C, Tao X, Chai Y (2019) Monolithic integration of all-in-one supercapacitor for 3D electronics. Adv Energy Mater 9(1900037):1–9

    Google Scholar 

  8. Yue X, Yang H, Cao Y, Jiang L, Li H, Shi F, Liu J (2022) Nitrogen-doped cornstalk-based biomass porous carbon with uniform hierarchical pores for highperformance symmetric supercapacitors. J Mater Sci 57:3645–3661. https://doi.org/10.1007/s10853-022-06891-9

    Article  CAS  Google Scholar 

  9. Du P, Dong Y, Kang H, Wang Q, Niu J (2019) Synthesis of holey graphene networks functionalized with p-phenylene diamine monomers for superior performance flexible solid-state supercapacitors. Electrochim Acta 320(134610):1–13

    Google Scholar 

  10. **ong Z, Yun X, Qiu L, Sun Y, Tang B, He Z, **ao J, Chung D, Ng TW, Yan H, Zhang R, Wang X, Li D (2019) A Dynamic graphene oxide network enables spray printing of colloidal gels for high-performance micro-supercapacitors. Adv Mater 31(16):1804434

    Article  CAS  Google Scholar 

  11. Ojha M, Le Houx J, Mukkabla R, Kramer D, Andrew Wills RG, Deepa M (2019) Lithium titanate/pyrenecarboxylic acid decorated carbon nanotubes hybrid-alginate gel supercapacitor. Electrochim Acta 309:253–263

    Article  CAS  Google Scholar 

  12. Ahmed J, Ubaidullah M, Ahmad T, Alhokbany N, Alshehri SM (2019) Synthesis of graphite oxide/cobalt molybdenum oxide hybrid nanosheets for enhanced electrochemical performance in supercapacitors and the oxygen evolution reaction. ChemElectroChem 6:2524–2530

    Article  CAS  Google Scholar 

  13. Wang Q, Zhang Y, Jiang H, Li X, ChengMeng YC (2019) , Designed mesoporous hollow sphere architecture metal (Mn Co, Ni) silicate: a potential electrode material for flexible all solid-state asymmetric supercapacitor. Chem Eng J 362:818–829

    Article  CAS  Google Scholar 

  14. Lu C, Chen X (2020) All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte. Nano Lett 20(3):1907–1914

    Article  CAS  Google Scholar 

  15. Qu Y, Zhang X, Lü W, Yang N, Jiang X (2020) All solid state flexible supercapacitor using graphene composite capacitor electrodes. J Mater Sci 55:163–163. https://doi.org/10.1007/s10853-020-05156-7

    Article  CAS  Google Scholar 

  16. Zhang X-Y, Sun S-H, Sun X-J, Zhao Y-R, Chen L, Yang Y, Lü W, Li D-B (2016) Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors. Light Sci Appl 5(10):e16130–e16130

    Article  CAS  Google Scholar 

  17. Zhao X, Li W, Li F, Hou Y, Lu T, Pan Y, Li J, Xu Y, He J (2021) Wearable yarn supercapacitors coated with twisted PPy@GO nanosheets and PPy@PAN-GO nanofibres. J Mater Sci 56:18147–18161

    Article  CAS  Google Scholar 

  18. Hua M, Wu S, ** Y, Zhao Y, Yao B (2021) X, He, Tough-hydrogel reinforced low-tortuosity conductive networks for stretchable and high-performance supercapacitors. Adv Mater 33:2100983

    Article  CAS  Google Scholar 

  19. Athira AR, Vimuna VM, Tomy Merin, Dinesh Babu KV, Alex S, Xavier TS (2022) Surfactant intercalated polypyrrole-exfoliated graphene oxide hybrid thin film symmetric supercapacitor. J Mater Sci 57:6749–6762. https://doi.org/10.1007/s10853-022-07075-1

    Article  CAS  Google Scholar 

  20. Xu T, Du H, Liu H, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33(2101368):1–30

    CAS  Google Scholar 

  21. Shabir A, Sehrawat P, Julien CM, Islam SS (2021) Reversible synthesis of GO role of differential bond structure transformation in fine-tuning photodetector response. Nanotechnology 32:045601

    Article  CAS  Google Scholar 

  22. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  23. Zhu J, Dong S, Xu Y, Guo H, Lu X, Zhang X (2019) Oxygen-enriched crumpled graphene-based symmetric supercapacitor with high gravimetric and volumetric performances. Electroanal Chem 833:119–125

    Article  CAS  Google Scholar 

  24. Kshetri T, Tran DT, Nguyen DC, Kim NH, Lau K-T, Lee JH (2020) Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor. Chem Eng J 380(122543):1–11

    Google Scholar 

  25. Sun Y-N, Sui Z-Y, Li X, **ao P-W, Wei Z-X, Han B-H (2018) Nitrogen-doped porous carbons derived from polypyrrole-based aerogels for gas uptake and supercapacitors. ACS Appl Nano Mater 1(2):609–616

    Article  CAS  Google Scholar 

  26. Peng S, Fan L, Rao W, Bai Z, Xu W, Xu J (2016) Bacterial cellulose membranes coated by polypyrrole/copper oxide as flexible supercapacitor electrodes. J Mater Sci 52(4):1930–1942. https://doi.org/10.1007/s10853-016-0482-7

    Article  CAS  Google Scholar 

  27. Chen F, Chen Q, Song Q, Lu H, Ma M (2019) Strong and stretchable polypyrrole hydrogels with biphase microstructure as electrodes for substrate-free stretchable supercapacitors. Adv Mater Interfaces 6(1900133):1–9

    Google Scholar 

  28. Wei D, Zhu J, Luo L, Huang H, Li L, Yu X (2020) Fabrication of poly(vinyl alcohol)-graphene oxide-polypyrrole composite hydrogel for elastic supercapacitors. J Mater Sci 55(25):11779–11791. https://doi.org/10.1007/s10853-020-04833-x

    Article  CAS  Google Scholar 

  29. Suvina V, Krishna SM, Nagaraju DH, Melo JS, Balakrishna RG (2018) Polypyrrole-reduced graphene oxide nanocomposite hydrogels: a promising electrode material for the simultaneous detection of multiple heavy metal ions. Mater Lett 232:209–212

    Article  CAS  Google Scholar 

  30. Chondath SK, Poolakkandy RR, Kottayintavida R, Thekkangil A, Gopalan NK, Vasu ST, Athiyanathil S, Menamparambath MM (2018) Water-chloroform interface assisted microstructure tuning of polypyrrole-silver sheets. ACS Appl Mater Inter 11(1):1723–1731

    Article  CAS  Google Scholar 

  31. Wang M, Zhong L, Cui M, Liu W, Liu X (2019) Nanomolar level acetaminophen sensor based on novel polypyrrole hydrogel derived N-doped porous carbon. Electroanal 31(4):711–717

    Article  CAS  Google Scholar 

  32. Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z (2015) Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv Mater 27(6):1117–1123

    Article  CAS  Google Scholar 

  33. Li F, Liu J, Ma Y, Shang Z, Huang Q-A, Huang X (2019) A monolithic integrated ultra-flexible all-solid-state supercapacitor based on a polyaniline conducting polymer. J Mater Chem A 7(25):15378–15386

    Article  CAS  Google Scholar 

  34. Pan Q, Tong N, He N, Liu Y, Shim E, Pourdeyhimi B, Gao W (2018) Electrospun mat of poly(vinyl alcohol)/graphene oxide for superior electrolyte performance. ACS Appl Mater Inter 10(9):7927–7934

    Article  CAS  Google Scholar 

  35. Yao L, Wu Q, Zhang P, Zhang J, Wang D, Li Y, Ren X, Mi H, Deng L, Zheng Z (2018) Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv Mater 30(1706054):1–9

    Google Scholar 

  36. Li H, Lv T, Li N, Yao Y, Liu K, Chen T (2017) Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity. Nanoscale 9(46):18474–18481

    Article  CAS  Google Scholar 

  37. Genovese M, Wu H, Virya A, Li J, Shen P, Lian K (2018) Ultrathin all-solid-state supercapacitor devices based on chitosan activated carbon electrodes and polymer electrolytes. Electrochim Acta 273:392–401

    Article  CAS  Google Scholar 

  38. Sun J, Gargitter V, Pei S, Wang T, Yan Y, Advani SG, Wang L, Chou T-W (2020) Mechanical and electrochemical performance of hybrid laminated structural composites with carbon fiber/ solid electrolyte supercapacitor interleaves. Compos Sci Technol 196(108234):1–8

    Google Scholar 

  39. Xu J, Wang Q, Wang X, **ang Q, Liang B, Chen D, She G (2013) Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 7(6):5453–5462

    Article  CAS  Google Scholar 

  40. Wang L, Yang H, Liu X, Zeng R, Li M, Huang Y, Hu X (2016) constructing hierarchical tectorum-like a-Fe2O3 /PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew Chem 128:1–7

    Google Scholar 

  41. Li J, Wang Y, Xu W, Wang Y, Zhang B, Luo S, Zhou X, Zhang C, Gu X, Hu C (2019) Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 57:379–387

    Article  CAS  Google Scholar 

  42. Miao Z, Huang Y, **n J, Su X, Sang Y, Liu H, Wang J-J (2019) High-performance symmetric supercapacitor constructed using carbon cloth boosted by engineering oxygen-containing functional groups. ACS Appl Mater Inter 11(19):18044–18050

    Article  CAS  Google Scholar 

  43. Yu N, Zhu M-Q, Chen D (2015) Flexible all-solid-state asymmetric supercapacitors with three-dimensional CoSe2/carbon cloth electrodes. J Mater Chem A 3(15):7910–7918

    Article  CAS  Google Scholar 

  44. Cao X-M, Han Z-B (2019) Hollow core–shell ZnO@ZIF-8 on carbon cloth for flexible supercapacitors with ultrahigh areal capacitance. Chem Commun 55(12):1746–1749

    Article  CAS  Google Scholar 

  45. Li F, Liu Y-L, Wang G-G, Zhang H-Y, Zhang B, Li G-Z, Wu Z-P, Dang L-Y, Han J-C (2019) Few-layered Ti3C2Tx MXenes coupled with Fe2O3 nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors. J Mater Chem A 7(39):22631–22641

    Article  CAS  Google Scholar 

  46. Zou Q, Khalafallah D, Wu Z, Chen J, Zhi M, Hong Z (2020) Supercritical ethanol deposition of Ni(OH)2 nanosheets on carbon cloth for flexible solid-state asymmetric supercapacitor electrode. J Supercrit Fluid 159(104774):1–8

    Google Scholar 

  47. Qin T, Chen H, Zhang Y, Chen X, Liu L, Yan D, Ma S, Hou J, Yu F, Peng S (2019) Modulating surface chemistry of heteroatom-rich micropore carbon cloth electrode for aqueous 2.1 V high-voltage window all-carbon supercapacitor. J Power Sour 431:232–238

    Article  CAS  Google Scholar 

  48. Li C, Shi G (2014) Functional gels based on chemically modified graphenes. Adv Mater 26:3992–4012

    Article  CAS  Google Scholar 

  49. Wang S, Wu ZS, Zhou F, Shi X, Zheng S, Qin J, **ao H, Sun C, Bao X (2018) All-solid-state high-energy planar hybrid micro-supercapacitors based on 2D VN nanosheets and Co(OH)2 nanoflowers. NPJ 2D Mater Appl 2(1):01201

    Article  Google Scholar 

  50. Yu H, Rouelle N, Qiu A, Oh J-A, Kempaiah DM, Whittle JD, Aakyiir M, **ng W, Ma J (2020) Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance. ACS Appl Mater Inter 12(34):37977–37985

    Article  CAS  Google Scholar 

  51. Lapčinskis L, Cirulis I, Lesničenoks P, Ābele A, Šutka A, Knite M (2019) PVA hydrogel electrolyte and porous polyisoprene carbon nanostructure composite based pressure sensitive supercapacitor. IOP Conf Ser Mater Sci Eng 500:012018

    Article  Google Scholar 

  52. Patil B, Ahn S, Yu S, Song H, Jeong Y, Kim JH, Ahn H (2018) Electrochemical performance of a coaxial fiber-shaped asymmetric supercapacitor based on nanostructured MnO2/CNT-web paper and Fe2O3/carbon fiber electrodes. Carbon 134:366–375

    Article  CAS  Google Scholar 

  53. Yang Y, **e L, Wen Z, Chen C, Chen X, Wei A, Cheng P, **e X, Sun X (2018) Coaxial triboelectric nanogenerator and supercapacitor fiber-based self-charging power fabric. ACS Appl Mater Inter 10(49):42356–42362

    Article  CAS  Google Scholar 

  54. Guo Y, Zheng K, Wan P (2018) A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small 14(1704497):1–9

    Google Scholar 

  55. Peng S, Jiang X, **ang X, Chen K, Chen G, Jiang X, Hou L (2019) High-performance and flexible solid-state supercapacitors based on high toughness and thermoplastic poly(vinyl alcohol)/NaCl/glycerol supramolecular gel polymer electrolyte. Electrochim Acta 324(134874): 1–11

    Google Scholar 

  56. Yin B-S, Zhang S-W, Ren Q-Q, Liu C, Ke K, Wang Z-B (2017) Elastic soft hydrogel supercapacitor for energy storage. J Mater Chem A 5(47):24942–24950

    Article  CAS  Google Scholar 

  57. Liu Y, Song N, Ma Z, Zhou K, Gan Z, Gao Y, Tang S, Chen C (2019) Synthesis of a poly(N-methylthionine)/reduced graphene oxide nanocomposite for the detection of hydroquinone. Mater Chem Phys 223:548–556

    Article  CAS  Google Scholar 

  58. Chen C, Gan Z, Zhou K, Ma Z, Liu Y, Gao Y (2018) Catalytic polymerization of N-methylthionine at electrochemically reduced graphene oxide electrodes. Electrochim Acta 283:1649–1659

    Article  CAS  Google Scholar 

  59. Rath R, Kumar P, Rana D, Mishra V, Kumar A, Mohanty S, Nayak SK (2022) Sulfonated PVDF nanocomposite membranes tailored with graphene oxide nanoparticles: improved proton conductivity and membrane selectivity thereof. J Mater Sci 57:3565–3585. https://doi.org/10.1007/s10853-021-06803-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by The National Natural Science Foundation of China (Grant Nos. 61604017, 41806112, 51802179), Key Research and Development Program of Shandong Province (International Science and Technological Cooperation) (Grant No. 2019GHZ005), Major Scientific and Technological Innovation Program of Shandong Province (Grant No. 2019JZZY020302), Project supported by Excellent Youth Innovation Team of Shandong Province (Grant No. 2019KJA005), Natural Science Foundation of Shandong Province, China (Grant No. ZR2020ME037).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Zhigang Gai or Yinglong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1352 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ding, M., Liu, S. et al. Partially reduced graphene oxide-based electrolyte: synthesis and electrochemical capacitance performance. J Mater Sci 57, 10271–10284 (2022). https://doi.org/10.1007/s10853-022-07298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07298-2

Navigation