Log in

Nanocellulose and its derivative materials for energy and environmental applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The application of biomass-derived renewable materials has generated great interest in recent research works. Among many such biopolymers, nanocellulose has become the leading topic in the sphere of sustainable material owing to the outstanding mechanical, chemical and thermal properties along with non-toxicity, surface functionality, ease of modification and sustainability. Nanocellulose is often considered to be a second-generation renewable resource and a better replacement for conventional petroleum-based products with or without any modifications. Even though some reviews have reported on some of the applications of nanocellulose, so far there is no comprehensive report gathering the extraction, properties, functionalization towards energy and environmental applications. This review aims to present the use of nanocellulose based materials for energy and environmental challenges. Important characteristics such as crystallinity, hydrophilicity, thermal decomposition and surface charge are described as a function of the targeted applications. In the latter part of this review, we have looked into the recent studies in the area of applications such as air pollution, heavy metal sorption, dye adsorption, biosensors, EMI shielding, fuel cell, solar cell, lithium-ion batteries and biofuels etc. However, a green, sustainable and scalable nanocellulose extraction is yet to be fulfilled. In our view, the bacterial nanocellulose based approach can address all these issues with the added advantage of producing a very high purity of nanocellulose. Hence this review is intended to provide new insights into the field of eco-friendly functional materials with included in-depth perspectives about nanocellulose and its future based on the current research trends.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2

Copyright ACS Publications, 2018

Figure 3
Figure 4
Figure 5
Figure 6

Copyright Elsevier, 2011

Figure 7
Figure 8

Copyright Elsevier, 2010

Figure 9
Figure 10

Copyright Elsevier, 2016

Figure 11
Figure 12
Figure 13

Copyright Elsevier, 2010. b Fabrication of porous CNFs/HKUST-1/stainless steel screen. Adapted with permission from [101]. Copyright Elsevier, 2019

Figure 14

Copyright ACS publications, 2019

Figure 15

Copyright ACS Publications, 2017. b Adsorption efficiency of positively charged crystal violet dye concentration. Adapted with permission from [111]. Copyright ACS Publications, 2011

Figure 16

Copyright ACS Publications, 2012

Figure 17

Copyright ACS Publications, 2018. b Electromagnetic microwave dissipation in the CNT/cellulose composite. Adapted with permission from [117]. Copyright RSC Publications, 2015

Figure 18
Figure 19

Copyright ACS Publications, 2016

Figure 20

Copyright Elsevier, 2016. b PPy polymerization in the presence of equal amounts of pristine CNCs and PVP/CNCs with cartoon illustrating the two drastically different morphologies of the end products. Adapted with permission from [143]. Copyright RSC Publishing, 2014

Figure 21

Copyright Nature, 2013

Figure 22

Copyright ACS Publications, 2013

Figure 23

Copyright Elsevier, 2012

Figure 24

Similar content being viewed by others

References

  1. Soares LA, Silva EL, Varesche MBA (2021) Dissecting the role of heterogeneity and hydrothermal pretreatment of sugarcane bagasse in metabolic pathways for biofuels production. Ind Crops Prod 160:113120. https://doi.org/10.1016/j.indcrop.2020.113120

    Article  CAS  Google Scholar 

  2. Gopakumar DA, Pasquini D, Henrique MA et al (2017) Meldrum’s acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle removal. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.6b02952

    Article  Google Scholar 

  3. Gopakumar DA, Pai AR, Pottathara YB et al (2018) Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the X-band. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b04549

    Article  Google Scholar 

  4. Li Z, Gou M, Yue X et al (2021) Facile fabrication of bifunctional ZIF-L/cellulose composite membrane for efficient removal of tellurium and antibacterial effects. J Hazard Mater 416:125888. https://doi.org/10.1016/j.jhazmat.2021.125888

    Article  CAS  Google Scholar 

  5. Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol. https://doi.org/10.1021/acs.biomac.5b01117

    Article  Google Scholar 

  6. Ai J, Yang S, Sun Y et al (2021) Corncob cellulose-derived hierarchical porous carbon for high performance supercapacitors. J Power Sources 484:229221. https://doi.org/10.1016/j.jpowsour.2020.229221

    Article  CAS  Google Scholar 

  7. Thomas MG, Abraham E, Jyotishkumar P et al (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2015.08.053

    Article  Google Scholar 

  8. Abdelhamid HN, Mathew AP (2022) Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted applications: a review. Coord Chem Rev 451:214263. https://doi.org/10.1016/J.CCR.2021.214263

    Article  CAS  Google Scholar 

  9. Chen X, Wang K, Wang Z et al (2021) Highly stretchable composites based on cellulose. Int J Biol Macromol 170:71–87. https://doi.org/10.1016/J.IJBIOMAC.2020.12.116

    Article  CAS  Google Scholar 

  10. Chen C, Hu L (2018) Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc Chem Res. https://doi.org/10.1021/acs.accounts.8b00391

    Article  Google Scholar 

  11. Chami Khazraji A, Robert S (2013) Self-assembly and intermolecular forces when cellulose and water interact using molecular modeling. J Nanomater. https://doi.org/10.1155/2013/745979

    Article  Google Scholar 

  12. Chirayil CJ, Joy J, Mathew L et al (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2014.04.020

    Article  Google Scholar 

  13. Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci, Part B: Polym Phys 40:1521–1529. https://doi.org/10.1002/POLB.10215

    Article  CAS  Google Scholar 

  14. Yamane C, Aoyagi T, Ago M et al (2006) Two different surface properties of regenerated cellulose due to structural anisotropy. Polym J 38:819–826. https://doi.org/10.1295/polymj.pj2005187

    Article  CAS  Google Scholar 

  15. Medronho B, Romano A, Miguel MG et al (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587. https://doi.org/10.1007/S10570-011-9644-6/FIGURES/1

    Article  CAS  Google Scholar 

  16. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/Urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548. https://doi.org/10.1002/MABI.200400222

    Article  CAS  Google Scholar 

  17. Yan L, Gao Z (2008) Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose 15:789–796. https://doi.org/10.1007/S10570-008-9233-5/FIGURES/9

    Article  CAS  Google Scholar 

  18. Leão A, Sartor S, Caraschi J (2006) Natural fibers based composites—technical and social issues. Mol Cryst Liq Cryst. https://doi.org/10.1080/15421400500388088

    Article  Google Scholar 

  19. Abraham E, Deepa B, Pothan LA et al (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2011.06.034

    Article  Google Scholar 

  20. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Progress in Polymer Science (Oxford)

  21. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2004.11.002

    Article  Google Scholar 

  22. Bismarck A, Aranberri-Askargorta I, Springer J et al (2002) Surface characterization of flax, hemp and cellulose fibers: surface properties and the water uptake behavior. Polym Compos 6:66. https://doi.org/10.1002/pc.10485

    Article  Google Scholar 

  23. Abdul Khalil HPS, Hanida S, Kang CW, Nik Fuaad NA (2007) Agro-hybrid composite: the effects on mechanical and physical properties of oil palm fiber (EFB)/glass hybrid reinforced polyester composites. J Reinf Plast Compos. https://doi.org/10.1177/0731684407070027

    Article  Google Scholar 

  24. Reddy N, Yang Y (2006) Properties of high-quality long natural cellulose fibers from rice straw. J Agric Food Chem. https://doi.org/10.1021/jf0617723

    Article  Google Scholar 

  25. Fávaro SL, Ganzerli TA, de Carvalho Neto AGV et al (2010) Chemical, morphological and mechanical analysis of sisal fiber-reinforced recycled high-density polyethylene composites. Express Polym Lett. https://doi.org/10.3144/expresspolymlett.2010.59

    Article  Google Scholar 

  26. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. https://doi.org/10.1021/JA0257319/SUPPL_FILE/JA0257319_S1.CIF

    Article  CAS  Google Scholar 

  27. Salama A, Neumann M, Günter C, Taubert A (2014) Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials. Beilstein J Nanotechnol. https://doi.org/10.3762/bjnano.5.167

    Article  Google Scholar 

  28. Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332. https://doi.org/10.1002/APP.1985.070300128

    Article  CAS  Google Scholar 

  29. Meader D, Atkins EDT, Happey F (1978) Cellulose trinitrate: molecular conformation and packing considerations. Polymer 19:1371–1374. https://doi.org/10.1016/0032-3861(78)90086-1

    Article  CAS  Google Scholar 

  30. Gopi S, Balakrishnan P, Divya C et al (2017) Facile synthesis of chitin nanocrystals decorated on 3D cellulose aerogels as a new multi-functional material for waste water treatment with enhanced anti-bacterial and anti-oxidant properties. New J Chem. https://doi.org/10.1039/c7nj02392h

    Article  Google Scholar 

  31. Suhas GVK, Carrott PJM et al (2016) Cellulose: A review as natural, modified and activated carbon adsorbent. Biores Technol 216:1066–1076. https://doi.org/10.1016/J.BIORTECH.2016.05.106

    Article  CAS  Google Scholar 

  32. Rosa SML, Rehman N, De Miranda MIG et al (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2011.08.084

    Article  Google Scholar 

  33. Oksman K, Etang JA, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2010.08.021

    Article  Google Scholar 

  34. dos Santos RM, Flauzino Neto WP, Silvério HA et al (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2013.08.049

    Article  Google Scholar 

  35. Sukyai P, Anongjanya P, Bunyahwuthakul N et al (2018) Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Res Int. https://doi.org/10.1016/j.foodres.2018.02.052

    Article  Google Scholar 

  36. Fernandes SCM, Freire CSR, Silvestre AJD et al (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2010.02.037

    Article  Google Scholar 

  37. Liu Y, Guo B, **a Q et al (2017) Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. Carbohyd Polym. https://doi.org/10.1021/acssuschemeng.7b00954

    Article  Google Scholar 

  38. Ross P, Weinhouse H, Aloni Y et al (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature. https://doi.org/10.1038/325279a0

    Article  Google Scholar 

  39. Zinniel DK, Lambrecht P, Harris NB et al (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol. https://doi.org/10.1128/AEM.68.5.2198-2208.2002

    Article  Google Scholar 

  40. Fu XY, Sotani T, Matsuyama H (2008) Effect of membrane preparation method on the outer surface roughness of cellulose acetate butyrate hollow fiber membrane. Desalination 233:10–18. https://doi.org/10.1016/J.DESAL.2007.09.022

    Article  CAS  Google Scholar 

  41. Omura T, Suzuki T, Minami H (2020) Preparation of cellulose particles with a hollow structure. Desalination. https://doi.org/10.1021/acs.langmuir.0c02646

    Article  Google Scholar 

  42. van de Ven TGM, Sheikhi A (2016) Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale 8:15101–15114. https://doi.org/10.1039/C6NR01570K

    Article  CAS  Google Scholar 

  43. Reddy N, Yang Y (2015) Introduction to regenerated cellulose fibers. Innov Biofibers Renew Resour. https://doi.org/10.1007/978-3-662-45136-6_15

    Article  Google Scholar 

  44. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524. https://doi.org/10.1016/S0079-6700(01)00025-9

    Article  CAS  Google Scholar 

  45. Liu C, Li B, Du H et al (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2016.06.025

    Article  Google Scholar 

  46. Reddy JP, Rhim JW (2014) Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2014.04.056

    Article  Google Scholar 

  47. Abraham E, Deepa B, Pothen LA et al (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2012.10.056

    Article  Google Scholar 

  48. Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol. https://doi.org/10.1021/bm400219u

    Article  Google Scholar 

  49. Sheltami RM, Abdullah I, Ahmad I et al (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2012.01.062

    Article  Google Scholar 

  50. Watkins D, Nuruddin M, Hosur M et al (2015) Extraction and characterization of lignin from different biomass resources. J Market Res 4:26–32. https://doi.org/10.1016/J.JMRT.2014.10.009

    Article  CAS  Google Scholar 

  51. Erbas Kiziltas E, Kiziltas A, Gardner DJ (2015) Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohyd Polym 124:131–138. https://doi.org/10.1016/J.CARBPOL.2015.01.036

    Article  CAS  Google Scholar 

  52. Hamawand I, Seneweera S, Kumarasinghe P, Bundschuh J (2020) Nanoparticle technology for separation of cellulose, hemicellulose and lignin nanoparticles from lignocellulose biomass: a short review. Nano-Struct Nano-Obj 24:100601. https://doi.org/10.1016/J.NANOSO.2020.100601

    Article  CAS  Google Scholar 

  53. Bhat AH, Khan I, Usmani MA et al (2019) Cellulose an ageless renewable green nanomaterial for medical applications: an overview of ionic liquids in extraction, separation and dissolution of cellulose. Int J Biol Macromol 129:750–777. https://doi.org/10.1016/J.IJBIOMAC.2018.12.190

    Article  CAS  Google Scholar 

  54. Ma Y, **a Q, Liu Y et al (2019) Production of nanocellulose using hydrated deep eutectic solvent combined with ultrasonic treatment. ACS Omega 4:8539–8547. https://doi.org/10.1021/ACSOMEGA.9B00519/SUPPL_FILE/AO9B00519_SI_001.PDF

    Article  CAS  Google Scholar 

  55. Novo LP, Bras J, García A et al (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3:2839–2846. https://doi.org/10.1021/ACSSUSCHEMENG.5B00762/SUPPL_FILE/SC5B00762_SI_001.PDF

    Article  CAS  Google Scholar 

  56. Borzì A, Dolabella S, Szmyt W et al (2020) Microstructure analysis of epitaxial BaTiO3 thin films on SrTiO3-buffered Si: strain and dislocation density quantification using HRXRD methods. Materialia 14:100953. https://doi.org/10.1016/J.MTLA.2020.100953

    Article  Google Scholar 

  57. French AD (2020) Increment in evolution of cellulose crystallinity analysis. Cellulose 27:5445–5448. https://doi.org/10.1007/S10570-020-03172-Z/FIGURES/1

    Article  Google Scholar 

  58. Trache D, Hussin MH, Hui Chuin CT et al (2016) Microcrystalline cellulose: Isolation, characterization and bio-composites application—a review. Int J Biol Macromol 5:66

    Google Scholar 

  59. Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2013.01.035

    Article  Google Scholar 

  60. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 6:66

    Google Scholar 

  61. Attia AAM, Abas KM, Ahmed Nada AA et al (2021) Fabrication, modification, and characterization of lignin-based electrospun fibers derived from distinctive biomass sources. Polymers. https://doi.org/10.3390/POLYM13142277

    Article  Google Scholar 

  62. Zugenmaier P (2008) Cellulose crystalline cellulose and derivatives characterization and structures. Cellulose. https://doi.org/10.1007/978-3-540-73934-0

    Article  Google Scholar 

  63. Trilokesh C, Kiran &, Uppuluri B isolation and characterization of cellulose nanocrystals from jackfruit peel. https://doi.org/10.1038/s41598-019-53412-x

  64. Fortunati E, Puglia D, Monti M et al (2013) Extraction of cellulose nanocrystals from phormium tenax fibres. J Polym Environ. https://doi.org/10.1007/s10924-012-0543-1

    Article  Google Scholar 

  65. Rosa MF, Medeiros ES, Malmonge JA et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2010.01.059

    Article  Google Scholar 

  66. Khelifa H, Bezazi A, Boumediri H et al (2021) Mechanical characterization of mortar reinforced by date palm mesh fibers: experimental and statistical analysis. Constr Build Mater 300:124067. https://doi.org/10.1016/J.CONBUILDMAT.2021.124067

    Article  CAS  Google Scholar 

  67. Bras J, Viet D, Bruzzese C, Dufresne A (2011) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2010.11.022

    Article  Google Scholar 

  68. Slavutsky AM, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohyd Polym 110:53–61. https://doi.org/10.1016/J.CARBPOL.2014.03.049

    Article  CAS  Google Scholar 

  69. Balakrishnan P, Gopi S, Geethamma VG, Thomas S (2019) Mechanical and permeability properties of thermoplastic starch composites reinforced with cellulose nanofiber for packaging applications. J Siberian Federal Univ Biol 66:287–301

    Article  Google Scholar 

  70. Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B. https://doi.org/10.1021/jp0219395

    Article  Google Scholar 

  71. Samyn P (2013) Wetting and hydrophobic modification of cellulose surfaces for paper applications. J Mater Sci 48:6455–6498. https://doi.org/10.1007/s10853-013-7519-y

    Article  CAS  Google Scholar 

  72. Dankovich TA, Gray DG (2011) Contact angle measurements on smooth nanocrystalline cellulose(I) thin films. J Adhes Sci Technol 25:699–708. https://doi.org/10.1163/016942410X525885

    Article  CAS  Google Scholar 

  73. Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.6b00126

    Article  Google Scholar 

  74. Bezerra RDS, Teixeira PRS, Teixeira ASNM et al (2015) Chemical functionalization of cellulosic materials—main reactions and applications in the contaminants removal of aqueous medium. In: Cellulose—fundamental aspects and current trends

  75. Han J, Zhou C, Wu Y et al (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: Effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromol. https://doi.org/10.1021/bm4001734

    Article  Google Scholar 

  76. Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT—Food Science and Technology. https://doi.org/10.1016/j.lwt.2014.04.011

  77. Tian C, Yi J, Wu Y et al (2016) Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2015.09.055

    Article  Google Scholar 

  78. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir. https://doi.org/10.1021/la001070m

    Article  Google Scholar 

  79. Saito T, Nishiyama Y, Putaux JL et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol. https://doi.org/10.1021/bm060154s

    Article  Google Scholar 

  80. Heinze T, Helbig K, Klemm D (1993) Investigation of metal ion adsorption of carboxymethyl cellulose gel beads. Acta Polym. https://doi.org/10.1002/actp.1993.010440210

    Article  Google Scholar 

  81. Kokol V, Božič M, Vogrinčič R, Mathew AP (2015) Characterisation and properties of homo- and heterogenously phosphorylated nanocellulose. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2015.02.056

    Article  Google Scholar 

  82. Oshima T, Kondo K, Ohto K et al (2008) Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2007.07.046

    Article  Google Scholar 

  83. Vieira AP, Santana SAA, Bezerra CWB et al (2010) Copper sorption from aqueous solutions and sugar cane spirits by chemically modified babassu coconut (Orbignya speciosa) mesocarp. Chem Eng J. https://doi.org/10.1016/j.cej.2010.04.036

    Article  Google Scholar 

  84. Gremos S, Zarafeta D, Kekos D, Kolisis F (2011) Direct enzymatic acylation of cellulose pretreated in BMIMCl ionic liquid. Biores Technol. https://doi.org/10.1016/j.biortech.2010.09.021

    Article  Google Scholar 

  85. Malik DS, Jain CK, Yadav AK (2017) Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Appl Water Sci. https://doi.org/10.1007/s13201-016-0401-8

    Article  Google Scholar 

  86. Silva Filho EC, Santos Júnior LS, Silva MMF et al (2012) Surface cellulose modification with 2-aminomethylpyridine for copper, cobalt, nickel and zinc removal from aqueous solution. Mater Res. https://doi.org/10.1590/s1516-14392012005000147

    Article  Google Scholar 

  87. Emengo FN, Nduka JKC, Onwu EO (2011) Nitration of cellulose and performance of cellulose nitrate based adhesives for selected substrates. In: New trends in chemical physics research

  88. da Silva Filho EC, de Melo JCP, Airoldi C (2006) Preparation of ethylenediamine-anchored cellulose and determination of thermochemical data for the interaction between cations and basic centers at the solid/liquid interface. Carbohyd Res. https://doi.org/10.1016/j.carres.2006.09.004

    Article  Google Scholar 

  89. Yu X, Tong S, Ge M et al (2013) Synthesis and characterization of multi-amino-functionalized cellulose for arsenic adsorption. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2012.09.050

    Article  Google Scholar 

  90. Zhang J, Jiang N, Dang Z et al (2008) Oxidation and sulfonation of cellulosics. Cellulose. https://doi.org/10.1007/s10570-007-9193-1

    Article  Google Scholar 

  91. Rajalaxmi D, Jiang N, Leslie G, Ragauskas AJ (2010) Synthesis of novel water-soluble sulfonated cellulose. Carbohyd Res 345:284–290. https://doi.org/10.1016/j.carres.2009.09.037

    Article  CAS  Google Scholar 

  92. Silva Filho EC, Lima LCB, Silva FC et al (2013) Immobilization of ethylene sulfide in aminated cellulose for removal of the divalent cations. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2012.10.031

    Article  Google Scholar 

  93. Agrawal R, Saxena NS, Sharma KB et al (2000) Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater Sci Eng A. https://doi.org/10.1016/s0921-5093(99)00556-0

    Article  Google Scholar 

  94. Abdelmouleh M, Boufi S, Belgacem MN et al (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes. https://doi.org/10.1016/S0143-7496(03)00099-X

    Article  Google Scholar 

  95. Sobkowicz MJ, Braun B, Dorgan JR (2009) Decorating in green: Surface esterification of carbon and cellulosic nanoparticles. Green Chem. https://doi.org/10.1039/b817223d

    Article  Google Scholar 

  96. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 6:66

    Google Scholar 

  97. Zhu G, Giraldo Isaza L, Dufresne A (2021) Cellulose nanocrystal-mediated assembly of graphene oxide in natural rubber nanocomposites with high electrical conductivity. J Appl Polym Sci 138:51460. https://doi.org/10.1002/APP.51460

    Article  CAS  Google Scholar 

  98. Guo W, Wang X, Zhang P et al (2018) Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2018.04.063

    Article  Google Scholar 

  99. Zhang QQ, Zhu YJ, Wu J, Dong LY (2019) Nanofiltration filter paper based on ultralong hydroxyapatite nanowires and cellulose fibers/nanofibers. ACS Sustain Chem Eng 7:17198–17209. https://doi.org/10.1021/ACSSUSCHEMENG.9B03793/SUPPL_FILE/SC9B03793_SI_001.PDF

    Article  CAS  Google Scholar 

  100. **ng Q, Zhao F, Chen S et al (2010) Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture. Acta Biomater. https://doi.org/10.1016/j.actbio.2009.12.036

    Article  Google Scholar 

  101. Zhao X, Chen L, Guo Y et al (2019) Porous cellulose nanofiber stringed HKUST-1 polyhedron membrane for air purification. Appl Mater Today. https://doi.org/10.1016/j.apmt.2018.11.012

    Article  Google Scholar 

  102. Su Z, Zhang M, Lu Z et al (2018) Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability. Cellulose. https://doi.org/10.1007/s10570-018-1696-4

    Article  Google Scholar 

  103. Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Interfaces 6:66. https://doi.org/10.1021/acsami.5b05841

    Article  CAS  Google Scholar 

  104. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  105. Maatar W, Boufi S (2015) Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2015.03.015

    Article  Google Scholar 

  106. Alatalo SM, Pileidis F, Mäkilä E et al (2015) Versatile cellulose-based carbon aerogel for the removal of both cationic and anionic metal contaminants from water. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.5b08287

    Article  Google Scholar 

  107. Rahman ML, Biswas TK, Sarkar SM et al (2017) Adsorption of rare earth metals from water using a kenaf cellulose-based poly(hydroxamic acid) ligand. J Mol Liq 243:616–623. https://doi.org/10.1016/J.MOLLIQ.2017.08.096

    Article  CAS  Google Scholar 

  108. Zhang QQ, Zhu YJ, Wu J et al (2019) Ultralong hydroxyapatite nanowire-based filter paper for high-performance water purification. ACS Appl Mater Interfaces 11:4288–4301. https://doi.org/10.1021/ACSAMI.8B20703/SUPPL_FILE/AM8B20703_SI_001.PDF

    Article  CAS  Google Scholar 

  109. Suhas, Gupta VK, Carrott PJM et al (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresource Technology

  110. Beyki MH, Bayat M, Shemirani F (2016) Fabrication of core-shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye. Biores Technol. https://doi.org/10.1016/j.biortech.2016.06.069

    Article  Google Scholar 

  111. Ma H, Burger C, Hsiao BS, Chu B (2012) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromol. https://doi.org/10.1021/bm201421g

    Article  Google Scholar 

  112. Wang R, Guan S, Sato A et al (2013) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Membr Sci. https://doi.org/10.1016/j.memsci.2013.06.020

    Article  Google Scholar 

  113. Kawamura A, Kiguchi T, Nishihata T et al (2014) Target molecule-responsive hydrogels designed via molecular imprinting using bisphenol A as a template. Chem Commun. https://doi.org/10.1039/c4cc01187b

    Article  Google Scholar 

  114. Wang M, Meng G, Huang Q, Qian Y (2012) Electrospun 1,4-DHAQ-doped cellulose nanofiber films for reusable fluorescence detection of trace Cu2+ and further for Cr3+. Environ Sci Technol 46:367–373. https://doi.org/10.1021/ES202137C/SUPPL_FILE/ES202137C_SI_001.PDF

    Article  CAS  Google Scholar 

  115. Kumari S, Chauhan GS (2014) New cellulose-lysine Schiff-base-based sensor-adsorbent for mercury ions. ACS Appl Mater Interfaces. https://doi.org/10.1021/am500820n

    Article  Google Scholar 

  116. Zhang LQ, Yang B, Teng J et al (2017) Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer. J Mater Chem C. https://doi.org/10.1039/c6tc05516h

    Article  Google Scholar 

  117. Huang HD, Liu CY, Zhou D et al (2015) Cellulose composite aerogel for highly efficient electromagnetic interference shielding. J Mater Chem A. https://doi.org/10.1039/c4ta05998k

    Article  Google Scholar 

  118. Jung J, Lee H, Ha I et al (2017) Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.7b14626

    Article  Google Scholar 

  119. Zhang Q, Li Q, Young TM et al (2019) A novel method for fabricating an electrospun poly(vinyl alcohol)/cellulose nanocrystals composite nanofibrous filter with low air resistance for high-efficiency filtration of particulate matter. https://doi.org/10.1021/acssuschemeng.9b00605

  120. Liu T, Cai C, Ma R et al (2021) Super-hydrophobic cellulose nanofiber air filter with highly efficient filtration and humidity resistance. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.1c04258

    Article  Google Scholar 

  121. Sepahvand S, Bahmani M, Ashori A et al (2021) Preparation and characterization of air nanofilters based on cellulose nanofibers. Int J Biol Macromol 182:1392–1398. https://doi.org/10.1016/j.ijbiomac.2021.05.088

    Article  CAS  Google Scholar 

  122. Yoo DK, Ho ∇, Woo C, Jhung SH, (2021) Ionic Salts@metal−organic frameworks: remarkable component to improve performance of fabric filters to remove particulate matters from air. ACS Appl Mater Interfaces 13:23092–23102. https://doi.org/10.1021/acsami.1c02290

    Article  CAS  Google Scholar 

  123. Buyukada-Kesici E, Gezmis-Yavuz E, Aydin D et al (2021) Design and fabrication of nano-engineered electrospun filter media with cellulose nanocrystal for toluene adsorption from indoor air. Mater Sci Eng B Solid-State Mater Adv Technol 264:114953. https://doi.org/10.1016/j.mseb.2020.114953

    Article  CAS  Google Scholar 

  124. Yu Q, Jiang Z, Yu Y et al (2021) Synchronous removal of emulsions and organic dye over palladium nanoparticles anchored cellulose-based membrane. J Environ Manag 288:112402. https://doi.org/10.1016/j.jenvman.2021.112402

    Article  CAS  Google Scholar 

  125. Abdelhameed RM, Abdel-Gawad H, Emam HE (2021) Macroporous Cu-MOF@cellulose acetate membrane serviceable in selective removal of dimethoate pesticide from wastewater. J Environ Chem Eng 9:105121. https://doi.org/10.1016/j.jece.2021.105121

    Article  CAS  Google Scholar 

  126. Zhuang S, Zhu K, Wang J (2021) Fibrous chitosan/cellulose composite as an efficient adsorbent for Co(II) removal. J Clean Prod 285:124911. https://doi.org/10.1016/j.jclepro.2020.124911

    Article  CAS  Google Scholar 

  127. Zong E, Wang C, Yang J et al (2021) Preparation of TiO2/cellulose nanocomposites as antibacterial bio-adsorbents for effective phosphate removal from aqueous medium. Int J Biol Macromol 182:434–444. https://doi.org/10.1016/j.ijbiomac.2021.04.007

    Article  CAS  Google Scholar 

  128. Li Z, Gong Y, Zhao D et al (2021) Enhanced removal of zinc and cadmium from water using carboxymethyl cellulose-bridged chlorapatite nanoparticles. Chemosphere 263:128038. https://doi.org/10.1016/j.chemosphere.2020.128038

    Article  CAS  Google Scholar 

  129. Awad R, Haghighat Mamaghani A, Boluk Y, Hashisho Z (2021) Synthesis and characterization of electrospun PAN-based activated carbon nanofibers reinforced with cellulose nanocrystals for adsorption of VOCs. Chem Eng J 410:128412. https://doi.org/10.1016/j.cej.2021.128412

    Article  CAS  Google Scholar 

  130. González-López ME, Laureano-Anzaldo CM, Pérez-Fonseca AA et al (2021) Congo red adsorption with cellulose-graphene nanoplatelets beads by differential column batch reactor. J Environ Chem Eng 9:105029. https://doi.org/10.1016/j.jece.2021.105029

    Article  CAS  Google Scholar 

  131. Yu H, Zheng L, Zhang T et al (2021) Adsorption behavior of Cd(II) on TEMPO-oxidized cellulose in inorganic/organic complex systems. Environ Res 195:110848. https://doi.org/10.1016/j.envres.2021.110848

    Article  CAS  Google Scholar 

  132. Hossain S, Shahruzzaman M, Kabir SF et al (2021) Jute cellulose nanocrystal/poly(N,N-dimethylacrylamide-co-3-methacryloxypropyltrimethoxysilane) hybrid hydrogels for removing methylene blue dye from aqueous solution. J Sci Adv Mater Devices 6:254–263. https://doi.org/10.1016/J.JSAMD.2021.02.005

    Article  CAS  Google Scholar 

  133. Yue Y, Gu J, Han J et al (2021) Effects of cellulose/salicylaldehyde thiosemicarbazone complexes on PVA based hydrogels: portable, reusable, and high-precision luminescence sensing of Cu2+. J Hazard Mater 401:123798. https://doi.org/10.1016/j.jhazmat.2020.123798

    Article  CAS  Google Scholar 

  134. Bandi R, Alle M, Park CW et al (2021) Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. Sens Actuators B Chem 330:129330. https://doi.org/10.1016/j.snb.2020.129330

    Article  CAS  Google Scholar 

  135. Zhan Y, Hao X, Wang L et al (2021) Superhydrophobic and flexible silver nanowire-coated cellulose filter papers with sputter-deposited nickel nanoparticles for ultrahigh electromagnetic interference shielding. ACS Appl Mater Interfaces 13:8. https://doi.org/10.1021/acsami.1c03692

    Article  CAS  Google Scholar 

  136. Liao SY, Wang XY, Li XM et al (2021) Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding. Chem Eng J 422:129962. https://doi.org/10.1016/j.cej.2021.129962

    Article  CAS  Google Scholar 

  137. Qian K, Zhou Q, Wu H et al (2021) Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Compos A Appl Sci Manuf 141:106229. https://doi.org/10.1016/j.compositesa.2020.106229

    Article  CAS  Google Scholar 

  138. Gopakumar DA, Thomas S, Fat O et al (2019) Nanocellulose based aerogels for varying engineering applications. In: Reference module in materials science and materials engineering

  139. Bayer T, Cunning BV, Selyanchyn R et al (2016) High temperature proton conduction in nanocellulose membranes: paper fuel cells. Chem Mater. https://doi.org/10.1021/acs.chemmater.6b01990

    Article  Google Scholar 

  140. Lu Y, Armentrout AA, Li J et al (2015) A cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes. J Mater Chem A. https://doi.org/10.1039/c5ta02304a

    Article  Google Scholar 

  141. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 6:66

    Google Scholar 

  142. Wang F, Kim HJ, Park S et al (2016) Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2016.03.012

    Article  Google Scholar 

  143. Wu X, Tang J, Duan Y et al (2014) Conductive cellulose nanocrystals with high cycling stability for supercapacitor applications. J Mater Chem A. https://doi.org/10.1039/c4ta04929b

    Article  Google Scholar 

  144. ** Y, Sun Y, Wang K et al (2018) Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells. Nano Res. https://doi.org/10.1007/s12274-017-1816-8

    Article  Google Scholar 

  145. Zhou Y, Fuentes-Hernandez C, Khan TM et al (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep. https://doi.org/10.1038/srep01536

    Article  Google Scholar 

  146. Fang Z, Zhu H, Yuan Y et al (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. https://doi.org/10.1021/nl404101p

    Article  Google Scholar 

  147. Jabbour L, Bongiovanni R, Chaussy D et al (2013) Cellulose-based Li-ion batteries: a review. Cellulose 6:66

    Google Scholar 

  148. Hu L, Choi JW, Yang Y et al (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0908858106

    Article  Google Scholar 

  149. Zhang J, Liu Z, Kong Q et al (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces. https://doi.org/10.1021/am302290n

    Article  Google Scholar 

  150. Dankovich TA, Gray DG (2012) Contact angle measurements on smooth nanocrystalline cellulose(I). Thin Films 25:699–708. https://doi.org/10.1163/016942410X525885

    Article  CAS  Google Scholar 

  151. Dutta S, De S, Alam MI et al (2012) Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. J Catal. https://doi.org/10.1016/j.jcat.2011.12.017

    Article  Google Scholar 

  152. Kim H, Kwon G-H, Han O, Robertson A (2021) Platinum encapsulated within a bacterial nanocellulosic−graphene nanosandwich as a durable thin-film fuel cell catalyst. ACS Appl Energy Mater 2021:1286–1293. https://doi.org/10.1021/acsaem.0c02533

    Article  CAS  Google Scholar 

  153. Truong DH, Dam MS, Bujna E et al (2021) In situ fabrication of electrically conducting bacterial cellulose-polyaniline-titanium-dioxide composites with the immobilization of Shewanella xiamenensis and its application as bioanode in microbial fuel cell. Fuel 285:119259. https://doi.org/10.1016/j.fuel.2020.119259

    Article  CAS  Google Scholar 

  154. Mashkour M, Rahimnejad M, Mashkour M, Soavi F (2021) Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly. Appl Energy 282:116150. https://doi.org/10.1016/j.apenergy.2020.116150

    Article  CAS  Google Scholar 

  155. Bayer T, Cunning BV, Šmíd B et al (2021) Spray deposition of sulfonated cellulose nanofibers as electrolyte membranes in fuel cells. Cellulose 28:1355–1367. https://doi.org/10.1007/s10570-020-03593-w

    Article  CAS  Google Scholar 

  156. Priyangga A, Pambudi AB, Atmaja L, Jaafar J (2021) Synthesis of nanocellulose composite membrane and its properties for direct methanol fuel cell. Mater Today Proc 6:66. https://doi.org/10.1016/j.matpr.2021.02.602

    Article  CAS  Google Scholar 

  157. Yadav HM, Park JD, Kang HC et al (2021) Cellulose nanofiber composite with bimetallic zeolite imidazole framework for electrochemical supercapacitors. Nanomaterials 11:1–10. https://doi.org/10.3390/nano11020395

    Article  CAS  Google Scholar 

  158. Zhang Q, Kang L, Zou JX et al (2021) A facile solution-based metallisation method without harsh conditions and expensive activators for paper substrate and its application in flexible supercapacitor. Mater Des 205:109742. https://doi.org/10.1016/j.matdes.2021.109742

    Article  CAS  Google Scholar 

  159. Wang R, Yu H, Dirican M et al (2020) Highly transparent, thermally stable, and mechanically robust hybrid cellulose-nanofiber/polymer substrates for the electrodes of flexible solar cells. ACS Appl Energy Mater 3:785–793. https://doi.org/10.1021/acsaem.9b01943

    Article  CAS  Google Scholar 

  160. Chu HY, Hong JY, Huang CF et al (2019) Enhanced photovoltaic properties of perovskite solar cells by the addition of cellulose derivatives to MAPbI3 based photoactive layer. Cellulose 26:9229–9239. https://doi.org/10.1007/s10570-019-02724-2

    Article  CAS  Google Scholar 

  161. Lv D, Chai J, Wang P et al (2021) Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils. Carbohyd Polym 251:116975. https://doi.org/10.1016/j.carbpol.2020.116975

    Article  CAS  Google Scholar 

  162. Yuan F, Huang Y, Qian J et al (2021) Free-standing SnS/carbonized cellulose film as durable anode for lithium-ion batteries. Carbohyd Polym 255:117400. https://doi.org/10.1016/j.carbpol.2020.117400

    Article  CAS  Google Scholar 

  163. Wang Z, Kang K, Wu J et al (2021) Comparative effects of electrospinning ways for fabricating green, sustainable, flexible, porous, nanofibrous cellulose/chitosan carbon mats as anode materials for lithium-ion batteries. J Market Res 11:50–61. https://doi.org/10.1016/j.jmrt.2021.01.009

    Article  CAS  Google Scholar 

  164. Madadi M, Zhao K, Wang Y et al (2021) Modified lignocellulose and rich starch for complete saccharification to maximize bioethanol in distinct polyploidy potato straw. Carbohyd Polym 265:118070. https://doi.org/10.1016/j.carbpol.2021.118070

    Article  CAS  Google Scholar 

  165. Wang Z, Lee Y-H, Kim S-W et al (2021) Why cellulose-based electrochemical energy storage devices? Adv Mater 33:2000892. https://doi.org/10.1002/ADMA.202000892

    Article  CAS  Google Scholar 

  166. Zhou J, Zhang L, Cai J, Shu H (2002) Cellulose microporous membranes prepared from NaOH/urea aqueous solution. J Membr Sci 210:77–90. https://doi.org/10.1016/S0376-7388(02)00377-0

    Article  CAS  Google Scholar 

  167. Zhou S, Nyholm L, Strømme M, Wang Z (2019) Cladophora cellulose: unique biopolymer nanofibrils for emerging energy, environmental, and life science applications. Acc Chem Res 52:2232–2243. https://doi.org/10.1021/ACS.ACCOUNTS.9B00215

    Article  CAS  Google Scholar 

  168. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. https://doi.org/10.1021/CR900339W

    Article  CAS  Google Scholar 

  169. el Baradai O, Beneventi D, Alloin F, et al (2018) Use of cellulose nanofibers as an electrode binder for lithium ion battery screen printing on a paper separator. Nanomaterials 8:982. https://doi.org/10.3390/NANO8120982

  170. Delannoy PE, Riou B, Lestriez B et al (2015) Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries. J Power Sources 274:1085–1090. https://doi.org/10.1016/J.JPOWSOUR.2014.10.164

    Article  CAS  Google Scholar 

  171. Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197. https://doi.org/10.1007/S10570-017-1194-0

    Article  CAS  Google Scholar 

  172. Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302–316. https://doi.org/10.1039/C4EN00059E

    Article  CAS  Google Scholar 

  173. Thomas P, Duolikun T, Rumjit NP et al (2020) Comprehensive review on nanocellulose: recent developments, challenges and future prospects. J Mech Behav Biomed Mater 110:103884. https://doi.org/10.1016/J.JMBBM.2020.103884

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherin Peter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, S., Lyczko, N., Gopakumar, D. et al. Nanocellulose and its derivative materials for energy and environmental applications. J Mater Sci 57, 6835–6880 (2022). https://doi.org/10.1007/s10853-022-07070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07070-6

Navigation