Log in

Few-layer boron nitride nanosheets/poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) dielectric nanocomposite functionalized with grafting POSS copolymer

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of advanced film capacitors for the energy storage and conversion has attracted tremendous attentions to fulfill the applications of electrical power supplies. The polymer-based composite with large dielectric property and discharged energy capability is promising candidate for film capacitor. Here, polymer composite film with high polarization was prepared by blending poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer and functionalized few-layer boron nitride nanosheets (BNNSs). The hyperbranched polyethylene-grafting-polyhedral oligomeric silsesquioxane (HBPE-g-POSS) copolymer was synthesized to exfoliate BNNSs from h-BN bulk in chloroform with assistance of ultrasonication. The morphologies of BNNSs have been characterized by high-resolution transmission electron microscopy and atomic force microscopy, which confirm the resultant nanosheet with lateral size of 100–200 nm and thickness of 1.2–1.8 nm. The presence of Si peak in X-ray photoelectron spectroscopy indicates that the hyperbranched copolymer is attached on surface of nanosheets. The received few-layer BNNSs were incorporated into P(VDF-TrFE-CFE) matrix via solution casting method. The relative content of electroactive phase in nanocomposite is enhanced because of strong interaction between fluoropolymer and HBPE-g-POSS during crystallization. The dielectric constant increases to 21.2 with dielectric loss of 0.04 at 100 Hz for 0.5 wt% nanocomposite, and released energy density of 8.3 J/cm3 with charge–discharge efficiency of 52% at 325 MV/m is also achieved in current film, which is attributed to large interfacial polarization with HBPE-g-POSS neighboring layer between nanosheet and polymer matrix. This work on few-layer BNNSs/fluoropolymer nanocomposite with hyperbranched copolymer interface establishes an effective route to develop polymer composite with high energy capability for flexible film capacitor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ribeiro C, Costa CM, Correia DM, Nunes-Pereira J, Oliveira J, Martins P, Goncalves R, Cardoso VF, Lanceros-Mendez S (2018) Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat Protoc 13:681–704

    CAS  Google Scholar 

  2. Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334–336

    CAS  Google Scholar 

  3. Zhu L, Wang Q (2012) Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45:2937–2954

    CAS  Google Scholar 

  4. Chen C, **ng J, Cui Y, Zhang C, Feng Y, Zhang Y, Zhang T, Chi Q, Wang X, Lei Q (2020) Designing of ferroelectric/linear dielectric bilayer films: an effective way to improve the energy storage performances of polymer-based capacitors. J Phys Chem C 124:5920–5927

    CAS  Google Scholar 

  5. Wu L, Wu K, Lei C, Liu D, Du R, Chen F, Fu Q (2019) Surface modifications of boron nitride nanosheets for poly(vinylidene fluoride) based film capacitors: advantages of edge-hydroxylation. J Mater Chem A 7:7664–7674

    CAS  Google Scholar 

  6. Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan MT, Liu H (2017) Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 29:1601727

    Google Scholar 

  7. Su R, Tseng JK, Lu MS, Lin M, Fu Q, Zhu L (2012) Ferroelectric behavior in the high temperature paraelectric phase in a poly (vinylidene fluoride-co-trifluoroethylene) random copolymer. Polymer 53:728–739

    CAS  Google Scholar 

  8. Yang L, Li X, Allahyarov E, Taylor PL, Zhang QM, Zhu L (2013) Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer 54:1709–1728

    CAS  Google Scholar 

  9. Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q (2018) A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv Mater 30:180572

    Google Scholar 

  10. Liu F, Li Q, Cui J, Li Z, Yang G, Liu Y, Dong L, **ong C, Wang H, Wang Q (2017) High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv Funct Mater 27:1606292

    Google Scholar 

  11. Jiang J, Shen Z, Qian J, Dan Z, Guo M, Lin Y, Nan CW, Chen L, Shen Y (2019) Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Storage Mater 18:213–221

    Google Scholar 

  12. Mao P, Wang J, Zhang L, Sun Q, Lin X, He L, Liu S, Zhang S, Gong H (2020) Tunable dielectric polarization and breakdown behavior for high energy storage capability in P(VDF-TrFE-CFE)/PVDF polymer blended composite films. Phys Chem Chem Phys 22:13143–13153

    CAS  Google Scholar 

  13. Zhou Y, Liu Q, Chen F, Zhao Y, Sun S, Guo J, Yang Y, Xu J (2020) Significantly enhanced energy storage in core-shell structured poly(vinylidene fluoride-co-chlorotrifluoroethylene)/BaTiO3@polyurea nanocomposite films. J Mater Sci 55:11296–11309. https://doi.org/10.1039/D0TA00903B

    Article  CAS  Google Scholar 

  14. Sun L, Shi Z, Wang H, Zhang K, Dastan D, Sun K, Fan R (2020) Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO3/P(VDF-HFP) composites. J Mater Chem A 8:5750–5757

    CAS  Google Scholar 

  15. Dang ZM, Zheng MS, Zha JW (2016) 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications. Small 12:1688–1701

    CAS  Google Scholar 

  16. Guan L, Weng L, Zhang X, Wu Z, Li Q, Liu L (2020) Microstructures, electrical behavior and energy storage properties of Ag@shell/PVDF-based polymers: different effects between an organic polydopamine shell and inorganic zinc oxide shell. J Mater Sci 55:15238–15251. https://doi.org/10.1007/s10853-020-05081-9

    Article  CAS  Google Scholar 

  17. Xu W, Yang G, ** L, Liu J, Zhang Y, Zhang Z, Jiang Z (2018) High-k polymer nanocomposites filled with hyperbranched phthalocyanine-coated BaTiO3 for high-temperature and elevated field applications. ACS Appl Mater Interfaces 10:11233–11241

    CAS  Google Scholar 

  18. Liu L, Qu J, Gu A, Wang B (2020) Percolative polymer composites for dielectric capacitors: a brief history, materials, and multilayer interface design. J Mater Chem A 8:18515–18537

    CAS  Google Scholar 

  19. Zhang L, Wang Y, He D, Deng Y (2019) Poly(vinylidene fluoride)-based nanocomposite employing oriented Bi2S3 nanorods with double-shell structure for high dielectric performance and loss suppression. Compos Sci Technol 171:118–126

    CAS  Google Scholar 

  20. Zhang Y, Zhang C, Feng Y, Zhang T, Chen Q, Chi Q, Liu L, Wang X, Lei Q (2019) Energy storage enhancement of P(VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Energy 66:104195

    CAS  Google Scholar 

  21. Luo H, Zhou X, Ellingford C, Zhang Y, Chen S, Zhou K, Zhang D, Bowen CR, Wan C (2019) Interface design for high energy density polymer nanocomposites. Chem Soc Rev 48:4424–4465

    CAS  Google Scholar 

  22. Duan G, Gao Y, Quan J, Hu Z, Wang Y, Yu J, Zhu J (2020) Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown strength. J Mater Sci 55:8170–8184. https://doi.org/10.1007/s10853-020-04596-5

    Article  CAS  Google Scholar 

  23. Zhu Y, Zhu Y, Huang X, Chen J, Li Q, He J, Jiang P (2019) High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv Eng Mater 9:1903062

    CAS  Google Scholar 

  24. Tempel DJ, Johnson LK, Huff RL, White PS, Brookhart M (2000) Mechanistic studies of Pd(II)-alpha-diimine-catalyzed olefin polymerizations. J Am Chem Soc 122:6686–6700

    CAS  Google Scholar 

  25. Backes C, Higgins TM, Kelly A, Boland C, Harvey A, Hanlon D, Coleman JN (2017) Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chem Mater 29:243–255

    CAS  Google Scholar 

  26. Shi X, Zhang R, Ruan K, Ma T, Guo Y, Gu J (2021) Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J Mater Sci Technol 82:239–249. https://doi.org/10.1016/j.jmst.2021.01.018

    Article  Google Scholar 

  27. Ye H, Liu W, Zhang X, Xu L (2020) The improved interfacial polarization in a poly(vinylidene fluoride-co-chlorotrifluoroethylene) composite with hyperbranched polyethylene-graft-poly(methyl methacrylate) modified boron nitride nanosheets. J Mater Chem C 8:12819–12828

    CAS  Google Scholar 

  28. Tang L, Dang J, He M, Li J, Kong J, Tang Y, Gu J (2019) Preparation and properties of cyanate-based wave-transparent laminated composites reinforced by dopamine/POSS functionalized Kevlar cloth. Compos Sci Technol 169:120–126

    CAS  Google Scholar 

  29. Martins P, Caparros C, Gonçalves R, Martins PM, Benelmekki M, Botelho G, Lanceros-Mendez S (2012) Role of nanoparticle surface charge on the nucleation of the electroactive beta-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J Phys Chem C 116:15790–15794

    CAS  Google Scholar 

  30. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog Polym Sci 39:683–706

    CAS  Google Scholar 

  31. Song S, **a S, Liu Y, Lv X, Sun S (2020) Effect of Na+ MMT-ionic liquid synergy on electroactive, mechanical, dielectric and energy storage properties of transparent PVDF-based nanocomposites. Chem Eng J 384:123365

    CAS  Google Scholar 

  32. Guo M, Jiang J, Shen Z, Lin Y, Nan CW, Shen Y (2019) High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater Today 29:49–67

    CAS  Google Scholar 

  33. Fan B, Zhou M, Zhang C, Yuan J, He D, Liu Y, Haghi-Ashtiani P, Bai J (2019) Improved dielectric properties in polypropylene/poly (vinylidene fluoride) binary blends containing boron nitride nanosheets: toward high-voltage current application. J Phys Chem C 123:11993–12000

    CAS  Google Scholar 

  34. Zhang RH, Shi XT, Tang L, Liu Z, Zhang JL, Guo YQ, Gu JW (2020) Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers. Chine J Polym Sci 38:730–739

    CAS  Google Scholar 

  35. Wang J, Chen H, Li X, Zhang G, Yu W, Zhou L, Yang Q, Shi Z, **ong C (2020) Flexible dielectric film with high energy density based on chitin/boron nitride nanosheets. Chem Eng J 383:123147

    CAS  Google Scholar 

  36. Cui Y, Feng Y, Zhang T, Zhang C, Chi Q, Zhang Y, Wang X, Chen Q, Lei Q (2020) Excellent energy storage performance of ferroconcrete-like all-organic linear/ferroelectric polymer films utilizing interface engineering. ACS Appl Mater Interfaces 12:56424–56434

    CAS  Google Scholar 

  37. Peng S, Yang X, Yang Y, Wang S, Zhou Y, Hu J, Li Q, He J (2019) Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites. Adv Mater 31:1807722

    Google Scholar 

  38. Liu S, Xue S, Shen B, Zhai J (2015) Reduced energy loss in poly(vinylidene-fluoride) nanocomposites by filling with a small loading of core-shell structured BaTiO3/SiO2 nanofibers. Appl Phys Lett 107:032907

    Google Scholar 

  39. Wang Y, Wang L, Yuan Q, Chen J, Niu Y, Xu X, Cheng Y, Yao B, Wang Q, Wang H (2018) Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization. Nano Energy 44:364–370

    CAS  Google Scholar 

  40. Pan Z, Yao L, Zhai J, Yao X, Chen H (2018) Interfacial coupling effect in organic/inorganic nanocomposites with high energy density. Adv Mater 30:1705662

    Google Scholar 

  41. Zhang X, Shen Y, Xu B, Zhang Q, Gu L, Jiang J, Ma J, Lin Y, Nan CW (2016) Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv Mater 28:2055

    CAS  Google Scholar 

  42. Wang J, **e Y, Liu J, Zhang Z, Zhang Y (2019) Towards high efficient nanodielectrics from linear ferroelectric P(VDF-TrFE-CTFE)-g-PMMA matrix and exfoliated mica nanosheets. Appl Surf Sci 469:437–445

    CAS  Google Scholar 

  43. Feng M, Chi Q, Feng Y, Zhang Y, Zhang T, Zhang C, Chen Q, Lei Q (2020) High energy storage density and efficiency in aligned nanofiber filled nanocomposites with multilayer structure. Compos Pt B-Eng 198:108206

    CAS  Google Scholar 

  44. Zhu Y, Jiang P, Huang X (2019) Poly(vinylidene fluoride) terpolymer and poly(methyl methacrylate) composite films with superior energy storage performance for electrostatic capacitor application. Compos Sci Technol 179:115–124

    CAS  Google Scholar 

  45. Zhu Y, Jiang P, Huang X (2018) Enhancing discharged energy density and suppressing dielectric loss of poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorofluoroethylene) by a sandwiched structure. IET Nanodielectrics 1:127–131

    Google Scholar 

  46. Chen C, ** a thin layer of self-assembled boron nitride film. Appl Surf Sci 535:147737

    CAS  Google Scholar 

  47. **e Y, Wang J, Yu Y, Jiang W, Zhang Z (2018) Enhancing breakdown strength and energy storage performance of PVDF-based nanocomposites by adding exfoliated boron nitride. Appl Surf Sci 440:1150–1158

    CAS  Google Scholar 

  48. Luo S, Yu J, Yu S, Sun R, Cao L, Liao WH, Wong CP (2019) Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv Energy Mater 9:1803204

    Google Scholar 

  49. Zhang X, Jiang Y, Gao R, Li X, Shen Z, Li BW, Zhang Q, Zhang S, Nan CW (2021) Tuning ferroelectricity of polymer blends for flexible electrical energy storage applications. Sci China Mater 64:1642–1652

    CAS  Google Scholar 

  50. Wang L, Luo H, Zhou X, Yuan X, Zhou K, Zhang D (2019) Sandwich-structured all-organic composites with high breakdown strength and high dielectric constant for film capacitor. Compos Part A Appl Sci Manuf 117:369–376

    CAS  Google Scholar 

  51. Li S, **e D, Qu G, Yang L, Min D, Cheng Y (2019) Tailoring interfacial compatibility and electrical breakdown properties in polypropylene based composites by surface functionalized POSS. Appl Surf Sci 478:451–458

    CAS  Google Scholar 

  52. Roy S, Feng J, Scionti V, Jana SC, Wesdemiotis C (2012) Self-assembled structure formation from interactions between polyhedral oligomeric silsesquioxane and sorbitol in preparation of polymer compounds. Polymer 53:1711–1724

    CAS  Google Scholar 

  53. Siddabattuni S, Schuman TP, Dogan F (2013) Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces. ACS Appl Mater Interfaces 5:1917–1927

    CAS  Google Scholar 

  54. Borgani R, Paon LKH, Hedenqvist MS, Gedde UW, Haviland DB (2016) Local charge injection and extraction on surface-modified Al2O3 nanoparticles in LDPE. Nano Lett 16:5934–5937

    CAS  Google Scholar 

  55. Chen C, Nie RP, Shi SC, Jia LC, Li Y, Li X, Huang YC, Han DL, Huang HD, Li ZM (2021) Simultaneous enhancement of breakdown strength and discharged energy efficiency of tri-layered polymer nanocomposite films by incorporating modified graphene oxide nanosheets. J Mater Sci 56:13165–13177. https://doi.org/10.1007/s10853-021-06155-y

    Article  CAS  Google Scholar 

  56. Du B, Su J, Tian M, Han T, Li J (2018) Understanding trap effects on electrical treeing phenomena in EPDM/POSS composites. Sci Rep 8:8481

    Google Scholar 

  57. Li S, Min D, Wang W, Chen G (2016) Linking traps to dielectric breakdown through charge dynamics for polymer nanocomposites. IEEE Trans Dielectr Electr Insul 23:2777–2785

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the Natural Science Foundation of Zhejiang Province of China (LTZ20E070001, 2021C01089) and National Natural Science Foundation of China (51707175) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1590 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Hu, S., Han, B. et al. Few-layer boron nitride nanosheets/poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) dielectric nanocomposite functionalized with grafting POSS copolymer. J Mater Sci 57, 1006–1018 (2022). https://doi.org/10.1007/s10853-021-06698-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06698-0

Navigation