Log in

A wood textile fiber made from natural wood

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Synthetic textile fibers have always had bright application prospects in the textile field due to their good physical properties, but their development has been restricted by the shortage of petrochemical resources. Here, inspired by the research on the preparation of cellulose nanofibers from natural wood, this research demonstrated a method of directly preparing wood textile fibers from natural wood. First, the natural wood was treated with a deep eutectic solvent (DES), and the treated wood had a highly porous structure and excellent flexibility so that it could be easily cut to separate the cellulose fiber bundles and then twisted into wood textile fibers. Then a series of structural analyses and performance tests of wood textile fiber were carried out, in which the results showed that this wood textile fiber has excellent weaving properties, tensile properties, elastic properties, and dyeability. Meanwhile, after a simple hydrophobic antibacterial treatment, the wood textile fiber could also show certain washing stability and antibacterial properties. The above-mentioned various properties of this wood textile fiber provide a great potential for its development in the textile field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chen C, Kuang Y, Zhu S et al (2020) Structure–property–function relationships of natural and engineered wood. Nat Rev Mater 5:642–666. https://doi.org/10.1038/s41578-020-0195-z

    Article  CAS  Google Scholar 

  2. Mi R, Chen C, Keplinger T et al (2020) Scalable aesthetic transparent wood for energy efficient buildings. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-020-17513-w

    Article  CAS  Google Scholar 

  3. **a Q, Chen C, Li T et al (2021) Solar-assisted fabrication of large-scale, patternable transparent wood. Sci Adv 7:1–9. https://doi.org/10.1126/sciadv.abd7342

    Article  CAS  Google Scholar 

  4. Song J, Chen C, Zhu S et al (2018) Processing bulk natural wood into a high-performance structural material. Nature 554:224–228. https://doi.org/10.1038/nature25476

    Article  CAS  Google Scholar 

  5. Chen C, Zhang Y, Li Y et al (2017) All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci 10:538–545. https://doi.org/10.1039/c6ee03716j

    Article  CAS  Google Scholar 

  6. Liu KK, Jiang Q, Tadepalli S et al (2017) Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl Mater Interfaces 9:7675–7681. https://doi.org/10.1021/acsami.7b01307

    Article  CAS  Google Scholar 

  7. Chen C, Song J, Zhu S et al (2018) Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge. Chem 4:544–554. https://doi.org/10.1016/j.chempr.2017.12.028

    Article  CAS  Google Scholar 

  8. Mancipe JMA, Nista SVG, Caballero GER, Mei LHI (2020) Thermochromic and/or photochromic properties of electrospun cellulose acetate microfibers for application as sensors in smart packing. J Appl Polym Sci 9:50039. https://doi.org/10.1002/app.50039

    Article  CAS  Google Scholar 

  9. **g C, Liu W, Hao H et al (2020) Regenerated and rotation-induced cellulose-wrapped oriented CNT fibers for wearable multifunctional sensors. Nanoscale 12:16305–16314. https://doi.org/10.1039/d0nr03684f

    Article  CAS  Google Scholar 

  10. Wan J, Song J, Yang Z et al (2017) Highly anisotropic conductors. Adv Mater 29:1703331. https://doi.org/10.1002/adma.201703331

    Article  CAS  Google Scholar 

  11. Jia C, Jiang F, Hu P et al (2018) Anisotropic, mesoporous microfluidic frameworks with scalable, aligned cellulose nanofibers. ACS Appl Mater Interfaces 10:7362–7370. https://doi.org/10.1021/acsami.7b17764

    Article  CAS  Google Scholar 

  12. Hooshmand S, Aitomäki Y, Norberg N et al (2015) Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl Mater Interfaces 7:13022–13028. https://doi.org/10.1021/acsami.5b03091

    Article  CAS  Google Scholar 

  13. **ong Z, Chen N, Wang Q (2020) Fabrication and characterization of melamine formaldehyde fibers with enhanced mechanical properties and high fire resistance by dry spinning. J Appl Polym Sci 137:49385. https://doi.org/10.1002/app.49385

    Article  CAS  Google Scholar 

  14. Lu L, Fan S, Niu Q et al (2019) Strong silk fibers containing cellulose nanofibers generated by a bioinspired microfluidic chip. ACS Sustain Chem Eng 7:14765–14774. https://doi.org/10.1021/acssuschemeng.9b02713

    Article  CAS  Google Scholar 

  15. Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromol 12:831–836. https://doi.org/10.1021/bm101510r

    Article  CAS  Google Scholar 

  16. Lundahl MJ, Cunha AG, Rojo E et al (2016) Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels. Sci Rep 6:30695. https://doi.org/10.1038/srep30695

    Article  CAS  Google Scholar 

  17. Jia C, Chen L, Shao Z et al (2017) Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose 24:2483–2498. https://doi.org/10.1007/s10570-017-1277-y

    Article  CAS  Google Scholar 

  18. Bian H, Chen L, Gleisner R et al (2017) Producing wood-based nanomaterials by rapid fractionation of wood at 80 °C using a recyclable acid hydrotrope. Green Chem 19:3370–3379. https://doi.org/10.1039/c7gc00669a

    Article  CAS  Google Scholar 

  19. Bian H, Chen L, Dai H, Zhu JY (2017) Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohyd Polym 167:167–176. https://doi.org/10.1016/j.carbpol.2017.03.050

    Article  CAS  Google Scholar 

  20. Zu G, Shen J, Zou L et al (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99:203–211. https://doi.org/10.1016/j.carbon.2015.11.079

    Article  CAS  Google Scholar 

  21. Jia C, Bian H, Gao T et al (2017) Thermally stable cellulose nanocrystals toward high-performance 2D and 3D nanostructures. ACS Appl Mater Interfaces 9:28922–28929. https://doi.org/10.1021/acsami.7b08760

    Article  CAS  Google Scholar 

  22. Hassani P, Soltani P, Ghane M, Zarrebini M (2021) Porous resin-bonded recycled denim composite as an efficient sound-absorbing material. Appl Acoust 173:107710. https://doi.org/10.1016/j.apacoust.2020.107710

    Article  Google Scholar 

  23. Li T, Chen C, Brozena AH et al (2021) Develo** fibrillated cellulose as a sustainable technological material. Nature 590:47–56. https://doi.org/10.1038/s41586-020-03167-7

    Article  CAS  Google Scholar 

  24. Jia C, Chen C, Kuang Y et al (2018) From wood to textiles: top-down assembly of aligned cellulose nanofibers. Adv Mater 30:1801347. https://doi.org/10.1002/adma.201801347

    Article  CAS  Google Scholar 

  25. Malaeke H, Housaindokht MR, Monhemi H, Izadyar M (2018) Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification. J Mol Liq 263:193–199. https://doi.org/10.1016/j.molliq.2018.05.001

    Article  CAS  Google Scholar 

  26. Yang R, Cao Q, Liang Y et al (2020) High capacity oil absorbent wood prepared through eco-friendly deep eutectic solvent delignification. Chem Eng J 401:126150. https://doi.org/10.1016/j.cej.2020.126150

    Article  CAS  Google Scholar 

  27. Hong S, Shen XJ, Pang B et al (2020) In-depth interpretation of the structural changes of lignin and formation of diketones during acidic deep eutectic solvent pretreatment. Green Chem 22:1851–1858. https://doi.org/10.1039/d0gc00006j

    Article  CAS  Google Scholar 

  28. Wu Y, Yang L, Zhou J et al (2020) Softened wood treated by deep eutectic solvents. ACS Omega 5:22163–22170. https://doi.org/10.1021/acsomega.0c02223

    Article  CAS  Google Scholar 

  29. Jamili F, Mirjalili M, Zamani HA (2019) Antibacterial wood-plastic composite produced from treated and natural dyed wood fibers. Polym Polym Compos 27:347–355. https://doi.org/10.1177/0967391119847537

    Article  CAS  Google Scholar 

  30. Wu Y, Bian Y, Yang F et al (2019) Preparation and properties of chitosan/graphene modified bamboo fiber fabrics. Polymers 11:11101540. https://doi.org/10.3390/polym11101540

    Article  CAS  Google Scholar 

  31. **a Q, Chen C, Yao Y et al (2021) In situ lignin modification toward photonic wood. Adv Mater (Deerfield Beach, Fla) 20:2001588. https://doi.org/10.1002/adma.202001588

    Article  CAS  Google Scholar 

  32. Huang C, Su Y, Shi J et al (2019) Revealing the effects of centuries of ageing on the chemical structural features of lignin in archaeological fir woods. New J Chem 43:3520–3528. https://doi.org/10.1039/c9nj00026g

    Article  CAS  Google Scholar 

  33. Wu J, Wu Y, Yang F et al (2019) Impact of delignification on morphological, optical and mechanical properties of transparent wood. Compos A Appl Sci Manuf 117:324–331. https://doi.org/10.1016/j.compositesa.2018.12.004

    Article  CAS  Google Scholar 

  34. Wu Y, Zhou J, Huang Q et al (2020) Study on the colorimetry properties of transparent wood prepared from six wood species. ACS Omega 5:1782–1788. https://doi.org/10.1021/acsomega.9b02498

    Article  CAS  Google Scholar 

  35. Huang C, Wang X, Liang C et al (2019) A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnol Biofuels 12:189. https://doi.org/10.1186/s13068-019-1527-3

    Article  CAS  Google Scholar 

  36. Gan W, **ao S, Gao L et al (2017) Luminescent and transparent wood composites fabricated by poly(methyl methacrylate) and γ-Fe2O3@YVO4:Eu3+ nanoparticle Impregnation. ACS Sustain Chem Eng 5:3855–3862. https://doi.org/10.1021/acssuschemeng.6b02985

    Article  CAS  Google Scholar 

  37. Yu Z, Yao Y, Yao J et al (2017) Transparent wood containing CsXWO3 nanoparticles for heat-shielding window applications. J Mater Chem A 5:6019–6024. https://doi.org/10.1039/c7ta00261k

    Article  CAS  Google Scholar 

  38. Shateri Khalil-Abad M, Yazdanshenas ME (2010) Superhydrophobic antibacterial cotton textiles. J Colloid Interface Sci 351:293–298. https://doi.org/10.1016/j.jcis.2010.07.049

    Article  CAS  Google Scholar 

  39. Ayazi-Yazdi S, Karimi L, Mirjalili M, Karimnejad M (2017) Fabrication of photochromic, hydrophobic, antibacterial, and ultraviolet-blocking cotton fabric using silica nanoparticles functionalized with a photochromic dye. J Text Inst 108:856–863. https://doi.org/10.1080/00405000.2016.1195088

    Article  CAS  Google Scholar 

  40. Rohrbach K, Li Y, Zhu H et al (2014) A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chem Commun 50:13296–13299. https://doi.org/10.1039/c4cc04817b

    Article  CAS  Google Scholar 

  41. Lin X, Li S, Jung J et al (2019) PHB/PCL fibrous membranes modified with SiO2@TiO2-based core@shell composite nanoparticles for hydrophobic and antibacterial applications. RSC Adv 9:23071–23080. https://doi.org/10.1039/c9ra04465e

    Article  CAS  Google Scholar 

  42. Sluiter A, Hames B, Ruiz RO, Scarlata C, Sluiter J Templeton D (2011) Determination of structural carbohydrates and lignin in biomass. Technical report NREL/TP-510–42618; National renewable energy laboratory: Golden, CO. https://doi.org/10.1007/s00449-014-1243-0

Download references

Acknowledgements

The authors gratefully acknowledgment the financial support from the Peoples’ Republic of China.

Funding

The authors gratefully acknowledge the financial support from the project funded by the National Natural Science Foundation of China (32071687 and 32001382), the Project of Science and Technology Plan of Bei**g Municipal Education Commission (KM202010012001), and the Special Scientific Research Fund of Construction of High-level teachers Project of Bei**g Institute of Fashion Technology (BIFTQG201805).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Wu or Feng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1762 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wu, Y., Yang, F. et al. A wood textile fiber made from natural wood. J Mater Sci 56, 15122–15133 (2021). https://doi.org/10.1007/s10853-021-06240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06240-2

Navigation